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Abstract. When developing efficient numerical methods for solving parabolic
types of equations, severe temporal stability constraints on the time step are

often required due to the high-order spatial derivatives and/or stiff reactions.

The implicit integration factor (IIF) method, which treats spatial derivative
terms explicitly and reaction terms implicitly, can provide excellent stability

properties in time with nice accuracy. One major challenge for the IIF is the
storage and calculation of the dense exponentials of the sparse discretization

matrices resulted from the linear differential operators. The compact repre-

sentation of the IIF (cIIF) can overcome this shortcoming and greatly save
computational cost and storage. On the other hand, the cIIF is often hard
to be directly applied to deal with problems involving cross derivatives. In

this paper, by treating the discretization matrices in diagonalized forms, we
develop an efficient cIIF method for solving a family of semilinear fourth-order

parabolic equations, in which the bi-Laplace operator is explicitly handled and

the computational cost and storage remain the same as to the classic cIIF for
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second-order problems. In particular, the proposed method can deal with
not only stiff nonlinear reaction terms but also various types of homogeneous

or inhomogeneous boundary conditions. Numerical experiments are finally

presented to demonstrate effectiveness and accuracy of the proposed method.

1. Introduction. Let Ω be an open rectangular domain in Rd and a final time
T > 0. In this paper, we consider a family of semilinear fourth-order parabolic
equations taking the following form:{

∂u
∂t

= −D∆2u+ f(u), x ∈ Ω, t ∈ [0, T ],

u|t=0 = u0, x ∈ Ω,
(1)

where D > 0 is the diffusion coefficient. Different boundary conditions such as the
Dirichlet boundary condition, periodic boundary condition or Neumann boundary
condition will all be studied in this paper. One of major difficulties in numerically
solving such equations is how to efficiently handle the bi-Laplace operator coupled
with the stiff nonlinear reaction term f(u). In general, the time step size relies
heavily on stiffness of the reactions and treatment of the high-order derivatives.
Integration factor (IF) or exponential differencing time (ETD) methods are among
the effective approaches to deal with temporal stability constraints associated with
reaction-diffusion equations [5, 14, 15]. By treating the highest order spatial deriva-
tives exactly in time direction, the IF or ETD methods are able to achieve excellent
temporal stability [6, 7, 14, 16]. To deal with additional stability constraints from
the stiff reactions, an implicit integration factor (IIF) method [21] was developed
for implicit treatment of the stiff reactions. In the IIF approach, the diffusion term
is solved exactly like the IF method while the nonlinear equations resulted from the
implicit treatment of reactions are decoupled from the diffusion term to avoid solv-
ing large nonlinear systems involving both diffusions and reactions, such as in the
standard implicit method for reaction-diffusion equations. The IIF method has very
nice stability, for example, its second-order scheme being linearly unconditionally
stable [21].

In the IF based methods the dominant computational cost arises from storage
and calculation of exponentials of matrices resulting from discretization of the lin-
ear differential operators. To overcome this difficulty in high spatial dimensions,
compact representation of the discretization matrices was introduced in the context
of the IIF method [20]. In the compact implicit integration factor (cIIF) method
in two dimensions, the discretized solutions are represented in a matrix form rather
than a vector while the discretized diffusion operator are represented in matrices of
much smaller size than the ones for the IIF while still preserving the stability prop-
erty of the IIF. In three or higher dimensions, the cIIF is significantly more efficient
in both storage and computational cost since the discretized matrix for each spatial
direction has the same size as the classic IIF in one dimension. In addition, the
cIIF method is robust in its implementation and integration with other spatial and
temporal discretization algorithms. For example, it can handle general curvilinear
coordinates as well as combining with adaptive mesh refinements in a straightfor-
ward fashion [18]. One also can apply the cIIF to stiff reactions and diffusions
while using other specialized hyperbolic solvers (e.g. WENO methods [19, 12]) for
convection terms to solve reaction-diffusion-convection equations efficiently [26].

On the other hand, the cIIF is often hard to be directly applied to deal with
problems involving cross derivatives. In this paper, we develop a cIIF method for
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solving a family of semilinear fourth-order parabolic equations, in which the bi-
Laplace operator is explicitly handled. In this approach we use standard central
finite differences for spatial discretization coupled with compact implicit integra-
tion factor methods for time discretization. The discretized matrices arising from a
compact representation of the diffusion operator need to be diagonalized just once
and pre-calculated before each time step iteration. We also discuss several other key
issues in the construction and implementation of the cIIF method such as fast eval-
uations of matrix-vector multiplications and stable and accurate incorporations of
inhomogeneous boundary conditions, while how to deal with inhomogeneous bound-
ary conditions with cIIF was not addressed at all in previous studies [20, 21]. This
new approach is found to have similar stability properties and computational cost
as the cIIF for second-order problems.

In the remainder of the paper, we first derive and analyze the cIIF method for
the semilinear fourth-order parabolic equation (1) with various homogeneous and
inhomogeneous boundary conditions (Dirichlet, Periodic and Neumann boundary
conditions) in two dimensions in Section 2, then present its extension to three
dimensions in Section 3. Numerical simulations given in Section 4 exhibit excellent
performance of the proposed cIIF method. Finally a conclusion is drawn in Section
5.

2. Compact implicit integration factor methods in two dimensions. In
this section, we derive compact implicit integration factor (cIIF) methods for the
model equation (1) in two dimensions. Suppose Ω = {xb < x < xe, yb < y < ye}.
The equation (1) can be written as

∂u

∂t
= −D(uxxxx + 2uxxyy + uyyyy) + f(u), (x, y) ∈ Ω, t ∈ [0, T ]. (2)

2.1. The problem with Dirichlet boundary conditions. We first consider the
problem with a Dirichlet boundary condition{

u = g1, (x, y) ∈ ∂Ω, t ∈ [0, T ],

∆u = g2, (x, y) ∈ ∂Ω, t ∈ [0, T ].
(3)

Let us discretize the spatial domain by a rectangular mesh which is uniform in
each direction as follows: (xi, yj) = (xb + ihx, yb + jhy) where hx = (xe − xb)/Nx,
hy = (ye − yb)/Ny and 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny. We will use the central finite
difference discretization scheme with second-order accuracy for the three spatial
derivative terms: uxxxx, uyyyy and uxxyy.

Set ui,j = u(t, xi, yj) for 0 ≤ i ≤ Nx and 0 ≤ j ≤ Ny. Define

δ2
xui,j =

ui+1,j − 2ui,j + ui−1,j

h2
x

, δ2
yui,j =

ui,j+1 − 2ui,j + ui,j−1

h2
y

.

Then we can write the semi-discretization of (2) by the second-order central differ-
ence scheme in the following form:

dui,j
dt

= −D(δ2
xδ

2
xui,j + 2δ2

xδ
2
yui,j + δ2

yδ
2
yui,j) + F(ui,j), (4)

for 0 < i < Nx and 0 < j < Ny.
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Denote the set of unknowns as

U =


u1,1 u1,2 · · · u1,Ny−1

u2,1 u2,2 · · · u2,Ny−1

...
...

. . .
...

uNx−1,1 uNx−1,2 · · · uNx−1,Ny−1


(Nx−1)×(Ny−1)

,

and set

Ux1 =

√
D

h2
x


g1(t, x0, y1) g1(t, x0, y2) · · · g1(t, x0, yNy−1)

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

g1(t, xNx , y1) g1(t, xNx , y2) · · · g1(t, xNx , yNy−1)


(Nx−1)×(Ny−1)

,

Uy1 =

√
D

h2
y


g1(t, x1, y0) 0 · · · 0 g1(t, x1, yNy )
g1(t, x2, y0) 0 · · · 0 g1(t, x2, yNy

)
...

...
...

. . .
...

g1(t, xNx−1, y0) 0 · · · 0 g1(t, xNx−1, yNy
)


(Nx−1)×(Ny−1)

,

Ux2 =
D

h2
x


g2(t, x0, y1) g2(t, x0, y2) · · · g2(t, x0, yNy−1)

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

g2(t, xNx , y1) g2(t, xNx , y2) · · · g2(t, xNx , yNy−1)


(Nx−1)×(Ny−1)

,

Uy2 =
D

h2
y


g2(t, x1, y0) 0 · · · 0 g2(t, x1, yNy

)
g2(t, x2, y0) 0 · · · 0 g2(t, x2, yNy

)
...

...
...

. . .
...

g2(t, xNx−1, y0) 0 · · · 0 g2(t, xNx−1, yNy
)


(Nx−1)×(Ny−1)

.

Let us further define

GP×P =


−2 1 0 0 · · · 0
1 −2 1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 1 −2 1
0 · · · 0 0 1 −2


P×P

,

and set A =

√
D
h2
x

G(Nx−1)×(Nx−1),B =

√
D
h2
y

G(Ny−1)×(Ny−1). Define the special

operators x© and y© as follows:

(A x©U)i,j =

Nx−1∑
l=1

(A)i,lul,j ,

(B y©U)i,j =

Ny−1∑
l=1

(B)j,lui,l.

(5)

Note here that these two operators are commutative, i.e.,

B y©A x©U = A x©B y©U.
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After incorporating with boundary conditions, the compact representation of (4)
takes the following form:

dU

dt
= −A x©(A x©U + Ux1 + B y©U + Uy1)−Ux2

−B y©(A x©U + Ux1 + B y©U + Uy1)−Uy2 + F(U), (6)

which can be simplified to

dU

dt
= −A2 x©U− 2B y©A x©U−B2 y©U + E + F(U), (7)

where F(U) = (f(ui,j))(Nx−1)×(Ny−1) and

E = −A x©(Ux1 + Uy1)−Ux2 −B y©(Ux1 + Uy1)−Uy2. (8)

Here A and B are diagonalizable and let us assume that

A = PxD̃xPx
−1, B = PyD̃yPy

−1, (9)

where D̃x and D̃y are diagonal matrices with the eigenvalues of A and B as the
diagonal elements, respectively.

Let V = P−1
y y©P−1

x x©U, then (7) can be transformed into

dV

dt
= −D̃2

x x©V − 2D̃y y©D̃x x©V − D̃2
y y©V + P−1

y y©P−1
x x©(E + F(U)), (10)

and thus

dV

dt
+ D̃2

x x©V + 2D̃y y©D̃x x©V + D̃2
y y©V = P−1

y y©P−1
x x©(E + F(U)). (11)

Suppose that the diagonal matrices are given by D̃x = diag[dx1 , d
x
2 , · · · , dxNx−1]

and D̃y = diag[dy1, d
y
2, · · · , d

y
Ny−1]. Set H̃ = (h̃i,j)(Nx−1)×(Ny−1) with h̃i,j = 2dxi d

y
j .

Here we define an operation “(e∗)” by taking element-by-element exponentials as
the following,

(e∗)H̃ = (eh̃i,j )(Nx−1)×(Ny−1).

Define another operator “�” for element-by-element multiplication between two
matrices with the same size by the following,

(M� L)i,j = (mi,j li,j),

where M = (mi,j), L = (li,j).
Then direct extension on (11) leads to[

eD̃
2
yt y©eD̃

2
xt x©

(
dV

dt
+ D̃2

x x©V + 2D̃y y©D̃x x©V + D̃2
y y©V

)]
� (e∗)H̃t) =[

eD̃
2
yt y©eD̃

2
xt x©P−1

y y©P−1
x x©(E + F(U))

]
� (e∗)H̃t), (12)

which can be simplified by

d(V � (e∗)Ht)

dt
= (P−1

y y©P−1
x x©(E + F(U)))� (e∗)Ht, (13)

where H = (hi,j)(Nx−1)×(Ny−1) with hi,j = (dxi + dyj )2.

Let us discretize the time as tn = n∆t, n = 0, 1, · · · , Nt with ∆t = T/Nt. Then
taking integration on both sides of (13) from tn to tn+1 gives

Vn+1 � (e∗)H∆t −Vn =

∫ ∆t

0

(P−1
y y©P−1

x x©(E + F(U)))� (e∗)Hτ dτ. (14)
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Thus we have

Vn+1 =
(
Vn +

∫ ∆t

0

(P−1
y y©P−1

x x©(E + F(U)))� (e∗)Hτ dτ
)
� (e∗)−H∆t. (15)

Finally by substituting V by U in (15), the numerical scheme can be achieved for
solving the model equation (1) from tn to tn+1,

Un+1 = Py y©Px x©
(

(P−1
y y©P−1

x x©Un)� (e∗)−H∆t

+

∫ ∆t

0

(P−1
y y©P−1

x x©(E + F(U)))� (e∗)−H(∆t−τ) dτ
)
. (16)

Next we use multistep schemes to accurately evaluate the integral which appears

on the right-hand-side of (16), i.e.,

∫ ∆t

0

(P−1
y y©P−1

x x©(E+F(U)))�(e∗)−H(∆t−τ) dτ .

2.1.1. Multistep approximations of the integral from the boundary conditions. To
evaluate the integral resulted from the inhomogeneous boundary terms∫ ∆t

0

(P−1
y y©P−1

x x©E(tn + τ))� (e∗)−H(∆t−τ) dτ,

we need to be careful since (e∗)H(∆t−τ) contains entries which decay with highly
different speeds along the time, and E(tn+ τ) involves the factors of 1/h4

x and 1/h4
y

which could quickly amplify errors arising from the time discretization, which would
cause severe numerical instability. To overcome this difficulty, here we will apply
an elegant approach proposed in [13], which will be described with details in the
following. Let

W(tn + τ) = (wi,j(tn + τ))(Nx−1)×(Ny−1) = P−1
y y©P−1

x x©E(tn + τ),

and

QW = (qWi,j)(Nx−1)×(Ny−1) =

∫ ∆t

0

W(tn + τ)� (e∗)−H(∆t−τ) dτ,

i.e.,

qWi,j =

∫ ∆t

0

e−hi,j(∆t−τ)wi,j(tn + τ) dτ.

It is reasonable to assume that W(t) changes smoothly along the time. Thus
based on the values of W(t) at tn+1, tn, · · · , tn+1−r1 , we use the Lagrange interpo-
lation polynomial PWr1 (τ) of degree r1 to approximate W(tn + τ) (they all can be
calculated from the given inhomogeneous boundary conditions):

PWr1 (tn + τ) =

r1−1∑
s=−1

ωr1,s(τ)W(tn−s), (17)

with ωr1,s(τ) =

r1−1∏
l=−1
l 6=s

τ + l∆t

(l − s)∆t
. Then we have

W(tn + τ) ≈ PWr1 (τ) +O(∆tr1+1). (18)

Thus we can approximate qWi,j by

qWi,j ≈
r1−1∑
s=−1

wi,j(tn−s)

∫ ∆t

0

e−hi,j(∆t−τ)ωr1,s(τ) dτ =

r1−1∑
s=−1

wi,j(tn−s)α
(r1,s)
i,j , (19)
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where α
(r1,s)
i,j =

∫ ∆t

0

e−hi,j(∆t−τ)ωr1,s(τ) dτ . We remark that α
(r1,s)
i,j is independent

of the time steps since a uniform time step size ∆t is used here. The main idea here

is to evaluate α
(r1,s)
i,j exactly to avoid any loss of accuracy and numerical instability.

For instance, the values of {α(r1,s)
i,j } for r1 = 0, 1, 2 are listed as below.

r1 = 0 : α
(0,−1)
i,j = φ0; (20)

r1 = 1 : α
(1,−1)
i,j = φ1, α

(1,0)
i,j = φ0 − φ1; (21)

r1 = 2 : α
(2,−1)
i,j =

1

2
(φ1 + φ2), α

(2,0)
i,j = φ0 − φ2, α

(2,1)
i,j = −1

2
(φ1 − φ2); (22)

where
φ0 =

1

hi,j
(1− e−hi,j∆t), φ1 =

1

hij
(1− φ0

∆t
), φ2 =

1

hij
(1− 2φ1

∆t
), hi,j 6= 0,

φ0 = ∆t, φ1 =
∆t

2
, φ2 =

∆t

3
, hi,j = 0.

(23)

Define Sr1,s = (α
(r1,s)
i,j )(Nx−1)×(Ny−1), then we can have the following approxi-

mation for the integral arising from the inhomogeneous boundary conditions∫ ∆t

0

(P−1
y y©P−1

x x©E(tn + τ))� (e∗)−H(∆t−τ) dτ ≈
r1−1∑
s=−1

Wn−s � Sr1,s. (24)

Such approximation is (r1 + 1)-th order accurate in time.

2.1.2. Implicit multistep approximations of the integral from the nonlinear reaction
term. For evaluation of the integral resulted from the nonlinear term∫ ∆t

0

(P−1
y y©P−1

x x©F(U(tn + τ)))� (e∗)−H(∆t−τ) dτ,

we may still use a similar multistep approach to obtain an implicit approximation
for the nonlinear term for the purpose of stability. However, since F(U(tn + τ))
itself does not involve any term related to spatial mesh size and 0 ≤ e−hi,j(∆t−τ) ≤ 1
for τ < ∆t, thus we can directly apply the Lagrange interpolation polynomial of
degree r2 at tn+1, tn, · · · , tn+1−r2 to the whole integrand (P−1

y y©P−1
x x©F(U(tn +

τ)))� (e∗)H(∆t−τ) as proposed in [20].
It is not difficult to find that∫ ∆t

0

(P−1
y y©P−1

x x©F(U(tn + τ)))� (e∗)−H(∆t−τ) dτ

≈ ∆t

r2−1∑
s=−1

βr2,s(P−1
y y©P−1

x x©F(Un−s))� (e∗)−(s+1)H∆t

= ∆t

r2−1∑
s=0

βr2,s(P−1
y y©P−1

x x©F(Un−s))� (e∗)−(s+1)H∆t

+∆tβr2,−1P−1
y y©P−1

x x©F(Un+1), (25)
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with βr2,s =

∫ ∆t

0

ωr2,s(τ) dτ , which is (r2 + 1)-th order accurate. For example, the

values of {β(r2,s)
i,j } for r2 = 0, 1, 2 are presented as below.

r2 = 0 : β(0,−1) = 1; (26)

r2 = 1 : β(1,−1) =
1

2
, β

(1,0)
i,j =

1

2
; (27)

r2 = 2 : β(2,−1) =
5

12
, β

(2,0)
i,j =

2

3
, β

(2,1)
i,j = − 1

12
. (28)

Note {β(r2,s)
i,j } are constant across all points.

2.2. The compact implicit integration factor schemes. Now put (24) and
(25) back into (16), and we obtain a compact implicit integration factor (cIIF)
scheme that is second-order accurate in space and at least (min{r1, r2} + 1)-th
order accurate in time:

Un+1 = Py y©Px x©
(

(P−1
y y©P−1

x x©Un)� (e∗)−H∆t +

r1−1∑
s=−1

(P−1
y y©P−1

x x©En−s)

�Sr1,s + ∆t

r2−1∑
s=0

βr2,s(P−1
y y©P−1

x x©F(Un−s))� (e∗)−(s+1)H∆t
)

+∆tβr2,−1F(Un+1). (29)

Clearly the cIIF scheme (29) is completely explicit when there isn’t the nonlinear
reaction term in the model problem (1), i.e., f(u) ≡ 0.

It is specially worthy noting that the nonlinear solution process (that is needed
when f(u) is nonlinear) in the cIIF scheme (29) is point-wise and thus very efficient
by using some Newton-type iterative method for scalar functions. If we apply the
same approximation approach for the first integral as discussed in Sections 2.1.1 to
the second integral, then we obtain a much more expensive implicit scheme since
the nonlinear solution process becomes global. When there is a function g(x, y)
included in the right hand side of the model equation (1), it can be treated exactly
the same way as that for inhomogeneous boundary conditions.

We present the detailed scheme with some typical choice of r1 and r2 in the
following.

• r1 = r2 = 0 (first-order in time):

Un+1 = Py y©Px x©
(

(P−1
y y©P−1

x x©Un)� (e∗)−H∆t

+(P−1
y y©P−1

x x©En+1)� S0,−1

)
+ ∆tF(Un+1); (30)

• r1 = r2 = 1 (second-order in time):

Un+1 = Py y©Px x©
(

(P−1
y y©P−1

x x©(Un +
∆t

2
F(Un)))� (e∗)−H∆t

+(P−1
y y©P−1

x x©En+1)� S1,−1 + (P−1
y y©P−1

x x©En)� S1,0

)
+

∆t

2
F(Un+1); (31)
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• r1 = r2 = 2 (third-order in time):

Un+1 = Py y©Px x©
(

(P−1
y y©P−1

x x©(Un +
2∆t

3
F(Un)))� (e∗)−H∆t

−(P−1
y y©P−1

x x©∆t

12
F(Un−1))� (e∗)−2H∆t + (P−1

y y©P−1
x x©En+1)

�S2,−1 + (P−1
y y©P−1

x x©En−1)� S2,0 + (P−1
y y©P−1

x x©En−1)� S2,1

)
+

5∆t

12
F(Un+1). (32)

Remark 1. As discussed in [13, 24], the computational complexities of Px x©V,
P−1
x x©V, Py y©V, P−1

y y©V for any (Nx − 1) × (Ny − 1) array V can be reduced

from O(N3) to O(N2 log2(N)) with N = max{Nx, Ny} through the use of fast
Discrete Sine Transform (DST) if we choose

dxk = −4D

h2
x

sin2

(
kπ

2Nx

)
, k = 1, 2, · · · , Nx − 1,

dyk = −4D

h2
y

sin2

(
kπ

2Ny

)
, k = 1, 2, · · · , Ny − 1.

Thus the overall cost of the proposed cIIF scheme in two dimensions is O(N2 log2N)
per time step. In addition, the overall computational storages of the proposed cIIF
scheme are in the order of O(N2

x), O(N2
y ) or O(NxNy).

2.3. Other type of boundary conditions.

2.3.1. Periodic boundary conditions. If a periodic boundary condition such as
u(t, xb, y) = u(t, xe, y), ux(t, xb, y) = ux(t, xe, y), y ∈ [yb, ye],

u(t, x, yb) = u(t, x, ye), uy(t, x, yb) = uy(t, x, ye), x ∈ [xb, xe],

∆u(t, xb, y) = ∆u(t, xe, y), (∆u)x(t, xb, y) = (∆u)x(t, xe, y), y ∈ [yb, ye],

∆u(t, x, yb) = ∆u(t, x, ye), (∆u)y(t, x, yb) = (∆u)y(t, x, ye), x ∈ [xb, xe],

(33)

is imposed on the model equation (1) and here t ∈ [0, T ]. For this case, the unknown
solutions can be denoted by

U = (ui−1,j−1)Nx×Ny
=


u0,0 u0,1 · · · u0,Ny−1

u1,0 u1,1 · · · u1,Ny−1

...
...

. . .
...

uNx−1,0 uNx−1,1

... uNx−1,Ny−1


Nx×Ny

,

and set

GP×P =


−2 1 0 0 · · · 0 1
1 −2 1 0 · · · 0 0

. . .
. . .

. . .

0 0 · · · 0 1 −2 1
1 0 · · · 0 0 1 −2


P×P

,

and A =

√
D
h2
x

GNx×Nx ,B =

√
D
h2
y

GNy×Ny . The cIIF scheme for the periodic bound-

ary condition takes the same from as (29) except that we have E = 0 here.
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Remark 2. In the case of periodic boundary conditions, the computational com-
plexities of Px x©V, P−1

x x©V, Py y©V, P−1
y y©V can be reduced from O(N3) to

O(N2 log2(N)) through the use of fast Discrete Fourier Transform (DFT) [13, 25]
if we choose

dxk = −4D

h2
x

sin2

(
(k − 1)π

Nx

)
, k = 1, 2, · · · , Nx,

dyk = −4D

h2
y

sin2

(
(k − 1)π

Ny

)
, k = 1, 2, · · · , Ny.

2.3.2. Neumann boundary conditions. If a Neumann boundary condition such as
∂u

∂x
= bx1 ,

∂u

∂y
= by1, (x, y) ∈ ∂Ω, t ∈ [0, T ],

∂∆u

∂x
= bx2 ,

∂∆u

∂y
= by2, (x, y) ∈ ∂Ω, t ∈ [0, T ],

(34)

is imposed on the model equation (1), then we may denote the unknown solutions
by

U = (ui−1,j−1)(Nx+1)×(Ny+1) =


u0,0 u0,1 · · · u0,Ny

u1,0 u1,1 · · · u1,Ny

...
...

. . .
...

uNx,0 uNx,1

... uNx,Ny


(Nx+1)×(Ny+1)

,

and set

GP×P =


−2 2 0 0 · · · 0
1 −2 1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 1 −2 1
0 · · · 0 0 2 −2


P×P

.

and A =

√
D
h2
x

G(Nx+1)×(Nx+1),B =

√
D
h2
y

G(Ny+1)×(Ny+1). We again have

E = −A x©(Ux1 + Uy1)−Ux2 −B y©(Ux1 + Uy1)−Uy2, (35)

but with

Ux1 =
2
√
D

hx


−bx1(t, x0, y0) −bx1(t, x0, y1) · · · −bx1(t, x0, yNy )

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

bx1(t, xNx , y0) bx1(t, xNx , y1) · · · bx1(t, xNx , yNy )


(Nx+1)×(Ny+1)

,

Uy1 =
2
√
D

hy


−by1(t, x0, y0) 0 · · · 0 by1(t, x0, yNy

)
−by1(t, x1, y0) 0 · · · 0 by1(t, x1, yNy

)
...

...
...

. . .
...

−by1(t, xNx
, y0) 0 · · · 0 by1(t, xNx

, yNy
)


(Nx+1)×(Ny+1)

,

Ux2 =
2D

hx


−bx2(t, x0, y0) −bx2(t, x0, y1) · · · −bx2(t, x0, yNy )

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

bx2(t, xNx , y0) bx2(t, xNx , y1) · · · bx2(t, xNx , yNy )


(Nx+1)×(Ny+1)

,
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Uy2 =
2D

hy


−by2(t, x0, y0) 0 · · · 0 by2(t, x0, yNy )
−by2(t, x1, y0) 0 · · · 0 by2(t, x1, yNy )

...
...

...
. . .

...
−by2(t, xNx

, y0) 0 · · · 0 by2(t, xNx
, yNy

)


(Nx+1)×(Ny+1)

.

The cIIF scheme for the Neumann boundary condition again takes the same form
as (29).

Remark 3. In the case of Neumann boundary conditions, the computational cost
of Px x©V, P−1

x x©V, Py y©V, P−1
y y©V again can reduced from O(N3) to O(N2

log2(N)) through the reflective extension and the use of fast Discrete Fourier Trans-
form (DFT) [13, 25].

2.4. Linear stability analysis. We test the linear stability of the proposed cIIF
schemes with the following linear equation

ut = −(q1 + q2)2u+ du, where d > 0, (36)

where q1 and q2 represent the coefficients for the bi-Laplace term in x, y directions,
respectively. As an example, we consider the second-order scheme (31) without
terms from boundary conditions. In order to obtain the stability conditions, we
first apply the second-order scheme to solve the linear equation (36), then substitute
un = einθ into the scheme. This results in

eiθ = e−(q1+q2)2∆t

(
1 +

1

2
λ

)
+

1

2
λeiθ,

where λ = d∆t. Let us solve the real part (λr) and the imaginary part (λi) of λ,
and this leads to

λr =
2(1− e−2(q1+q2)2∆t)

(1− e−(q1+q2)2∆t)2 + 2(1 + cos θ)e−(q1+q2)2∆t
,

λi = 4 sin θe−(q1+q2)2∆t

(1− e−(q1+q2)2∆t)2 + 2(1 + cos θ)e−(q1+q2)2∆t
.

(37)

Since (q1 + q2)2 > 0, we have the real part λr > 0 for all 0 ≤ θ ≤ 2π. Therefore the
stability region lies in the whole left half of complex plane, and thus the second-order
scheme (31) is A-stable.

For the third-order scheme as shown in (32), a similar analysis can be performed
to obtain

λ =
eiθ − e−(q1+q2)2∆t

5

12
eiθ +

2

3
e−(q1+q2)2∆t − 1

12
e−2(q1+q2)2∆t

. (38)

To investigate the stability region, a recurrence relation of the third order scheme
is given by(

1− 5

12
λ

)
un+1 − e−(q1+q2)2∆t

(
1 +

2

3
λ

)
un +

e−2(q1+q2)2∆t

12
λ = 0.

Thus the characteristic polynomial is(
1− 5

12
λ

)
ω2 − e−(q1+q2)2∆t

(
1 +

2

3
λ

)
ω +

e−2(q1+q2)2∆t

12
λ = 0,
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which has roots

ω =
e−(q1+q2)2∆t

(
1 + 2

3λ±
√

7
12λ

2 + λ+ 1
)

2− 5
6λ

.

The stability region is then obtained by solving |w| < 1, i.e.,∣∣∣∣∣∣
1 + 2

3λ±
√

7
12λ

2 + λ+ 1

2− 5
6λ

∣∣∣∣∣∣ < e(q1+q2)2∆t. (39)

Obviously the stability region is an increasing function of (q1 + q2)2∆t. When
(q1 + q2)2∆t → ∞, the stability region becomes the entire complex plane except
one zero point (λ = 12/5) on the real axis. For the purpose of easy illustration,
the stability regions of the third-order scheme for (q1 + q2)2∆t = 0, 0.5, 0.6, 0.8 are
plotted in Figure 1.

−100 −50 0 50 100
−60

−40

−20

0

20

40

60

q∆t=0

q∆t=0.8

q∆t=0.6

q∆t=0.5

Figure 1. Stability regions (interior of the closed contour) for the
third-order scheme (32) with q∆t = 0, 0.5, 0.6, 0.8, where q = (q1 +
q2)2.

3. Compact implicit integration factor methods in three dimensions. In
this section we derive the cIIF methods for the model problem (1) in three dimen-
sions. Let Ω = {xb < x < xe, yb < y < ye, zb < z < ze}. The equation (1) can now
be written as

∂u

∂t
= −D(uxxxx + uyyyy + uzzzz + 2uxxyy + 2uyyzz + 2uzzxx)

+f(u), (x, y, z) ∈ Ω, t ∈ [0, T ]. (40)

In this section, we only present the case with a Dirichlet boundary condition, and the
derivation for other boundary conditions follows the same like the two dimensional
case.
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Similar to solving the two dimensional system (2), we denote hx, hy, hz as the
spatial mesh size, and Nx, Ny, Nz as the number of grid points in x, y, z directions,
respectively. Let A, B, and G defined the same as before in two dimensional case.

We now define C =

√
D

h2
z

G(Nz−1)×(Nz−1). Set ui,j,k = u(t, xi, yj , zk) and ∆ui,j,k =

∆u(t, xi, yj , zk) for 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny and 0 ≤ k ≤ Nz. Denote the unknown
solutions as a three-dimensional array by U = (ui,j,k)(Nx−1)×(Ny−1)×(Nz−1).

Define the following three-dimensional arrays with a dimension (Nx−1)× (Ny−
1)× (Nz − 1),

Ux1 =

√
D

h2
x

(µxi,j,k), µxi,j,k =


g1(t, x0, yj , zk), i = 1,

0, 1 < i < Nx − 1,

g1(t, xNx
, yj , zk), i = Nx − 1,

Uy1 =

√
D

h2
y

(µyi,j,k), µyi,j,k =


g1(t, xi, y0, zk), j = 1,

0, 1 < j < Ny − 1,

g1(t, xi, yNy , zk), j = Ny − 1,

Uz1 =

√
D

h2
z

(µzi,j,k), µzi,j,k =


g1(t, xi, yj , z0), k = 1,

0, 1 < k < Nz − 1,

g1(t, xi, yj , zNz
) k = Nz − 1,

Ux2 =
D

h2
x

(νxi,j,k), νxi,j,k =


g2(t, x0, yj , zk), i = 1,

0, 1 < i < Nx − 1,

g2(t, xNx
, yj , zk), i = Nx − 1,

Uy2 =
D

h2
y

(νyi,j,k), νyi,j,k =


g2(t, xi, y0, zk), j = 1,

0, 1 < j < Ny − 1,

g2(t, xi, yNy
, zk), j = Ny − 1,

Uz2 =
D

h2
z

(νzi,j,k), νzi,j,k =


g2(t, xi, yj , z0), k = 1,

0, 1 < k < Nz − 1,

g2(t, xi, yj , zNz
) k = Nz − 1.

With a similar analysis like two dimensional case, we can write the semi-discreti-
zation of (40) as the following compact representation,

Ut = −A x©A x©U−B y©B y©U−C z©C z©U− 2A x©B y©U

−2B y©C z©U− 2C z©A x©U + E + F(U), (41)

where the operations x©, y© and z© are defined as

(A x©U)i,j,k =

Nx−1∑
l=1

(A)i,lul,j,k,

(B y©U)i,j,k =

Ny−1∑
l=1

(B)j,lui,l,k,

(C z©U)i,j,k =

Nz−1∑
l=1

(C)k,lui,j,l,

(42)
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and the three-dimensional array E is defined correspondingly from the given inho-
mogeneous Dirichlet boundary conditions as

E = −A x©(Ux1 + Uy1 + Uz1)−Ux2 −B y©(Ux1 + Uy1 + Uz1)−Uy2

−C z©(Ux1 + Uy1 + Uz1)−Uz2. (43)

Once again we observe that C is diagonalizable with C = PzD̃zPz
−1 where the

diagonal matrix D̃z = diag[dz1, d
z
2, · · · , dzNz−1] with dzi being the eigenvalues of C.

Following the similar analysis in two dimensions, the compact implicit integration
factor (cIIF) scheme in three dimensions is given as below,

Un+1 = Pz z©Py y©Px x©
(

(P−1
z z©P−1

y y©P−1
x x©Un)� (e∗)−H∆t

+

r1−1∑
s=−1

(P−1
z z©P−1

y y©P−1
x x©En−s)� Sr1,s

+∆t

r2−1∑
s=0

βr2,s(P−1
z z©P−1

y y©P−1
x x©F(Un−s))� (e∗)−(s+1)H∆t

)
+∆tβr2,−1F(Un+1). (44)

where H = (hi,j,k) (with a dimension of (Nx − 1)× (Ny − 1)× (Nz − 1)) with

hi,j,k = (dxi +dyj +dzk)2 and SWr1,s = (α
(r1,s)
i,j,k ) (with a dimension of (Nx−1)×(Ny−1)

×(Nz − 1)) are defined as a three dimensional version of (19).

Remark 4. The overall cost of the proposed cIIF scheme in three dimensions
similarly can be reduced from O(N4) to O(N3 log2N) where N = max{Nx, Ny, Nz}
per time step by using FFT-based fast calculations. The overall storages of the
proposed cIIF scheme in three dimensions are in the order of O(N2

x), O(N2
y ), O(N2

z )
or O(NxNyNz).

4. Numerical experiments. In this section we will demonstrate effectiveness and
accuracy of the proposed cIIF scheme through numerical examples. In all simula-
tions the differences between the numerical solutions and the exact solutions at the
final time T are measured by the L2 and L∞ errors.

Example 1. In this example we test the cIIF scheme in two dimensions using a
simple linear equation, which takes the following form{

∂u
∂t

= − 3
5π4 ∆2u+ 5u, (x, y) ∈ Ω, t ∈ [0, T ],

u|t=0 = sinπ(x− 1
4 ) cos 2π(y − 1

8 ), (x, y) ∈ Ω,
(45)

where Ω = [−1, 1]× [−1, 1]. The exact solution is given by

u(x, y, t) = e−10t sinπ
(
x− 1

4

)
cos 2π

(
y − 1

8

)
. (46)

The Dirichlet or Neumann boundary conditions are derived accordingly from the
exact solution. Note that the exact solution (46) automatically satisfies the periodic
boundary conditions. We set the final time T = 1.

First we test the cIIF scheme with r1 = r2 = 1 as depicted in (31) which is
theoretically second-order accurate in both space and time. We run the experiments
at five different spatial and temporal resolutions. Numerical results are reported
Tables 1 (for Dirichlet, Neumann and Periodic boundary conditions). As expected
we can clearly see the second-order convergence in both space and time for all cases.
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To test the cIIF scheme with r1 = r2 = 2 which is third-order accurate in time,
we fix a uniform fine spatial grid with Nx = Ny = 2048, and conduct a series of
simulations by varying time step sizes. Numerical results are reported in the bottom
parts of Tables 1, higher-order accuracy (slightly smaller than 3) in time are clearly
observed.

(Nx ×Ny) ×Nt L2 Error Order L∞ Error Order CPU (s)

Dirichlet Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(162) × 16 1.22e-01 - 1.27e-01 - 0.05

(322) × 32 2.81e-02 2.12 2.92e-02 2.12 0.11

(642) × 64 6.89e-03 2.03 7.14e-03 2.03 0.26

(1282) × 128 1.71e-03 2.01 1.78e-03 2.00 1.29

(2562) × 256 4.28e-04 2.00 4.43e-04 2.01 11.13

Accuracy test of the cIIF scheme with r1 = r2 = 2

(20482) × 8 1.38e-03 - 1.48e-03 - 94.44

(20482) × 16 2.12e-04 2.70 2.25e-04 2.72 183.85

(20482) × 32 2.95e-05 2.85 3.12e-05 2.85 355.14

(20482) × 64 3.80e-06 2.96 4.05e-06 2.95 708.76

(20482) × 128 4.03e-07 3.24 4.81e-07 3.07 1414.69

Neumann Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(162) × 16 1.39e+00 - 1.89e+00 - 0.04

(322) × 32 3.38e-01 2.04 4.61e-01 2.04 0.06

(642) × 64 8.41e-02 2.01 1.15e-01 2.00 0.22

(1282) × 128 2.10e-02 2.00 2.86e-02 2.01 1.09

(2562) × 256 5.25e-03 2.00 7.15e-03 2.00 13.1

Accuracy test of the cIIF scheme with r1 = r2 = 2

(20482) × 8 8.00e-03 - 1.15e-02 - 90.61

(20482) × 16 1.23e-03 2.70 1.77e-03 2.70 178.74

(20482) × 32 1.72e-04 2.84 2.48e-04 2.84 354.97

(20482) × 64 2.31e-05 2.90 3.32e-05 2.90 708.32

(20482) × 128 3.33e-06 2.79 4.74e-06 2.81 1424.91

Periodic Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(162) × 16 1.11e-04 - 1.09e-04 - 0.02

(322) × 32 1.70e-05 2.71 1.70e-05 2.68 0.03

(642) × 64 3.79e-06 2.17 3.79e-06 2.17 0.14

(1282) × 128 9.22e-07 2.04 9.22e-07 2.04 0.73

(2562) × 256 2.29e-07 2.01 2.29e-07 2.01 8.44

Accuracy test of the cIIF scheme with r1 = r2 = 2

(20482) × 8 4.89e-06 - 4.89e-06 - 71.94

(20482) × 16 5.46e-07 3.16 5.46e-07 3.16 139.07

(20482) × 32 6.50e-08 3.07 6.50e-08 3.07 277.18

(20482) × 64 8.96e-09 2.86 8.96e-09 2.86 561.06

(20482) × 128 1.39e-09 2.69 1.39e-09 2.69 1123.69

Table 1. Errors and convergence rates at the final time T = 1 of
Example 1 (2D linear case) with inhomogeneous Dirichlet bound-
ary condition, Neumann boundary condition and Periodic boundary
condition respectively. The units of CPU times are in seconds (s).
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Remark 5. If explicit methods such as the standard Runge-Kutta methods are
applied to solve (45), extremely small time steps (proportional to min(h4

x, h
4
y)) are

generally needed in order to satisfy the stability condition [9]. We have checked
all the simulations in Table 1 using the second order Runge-Kutta method with
the same spatial grids and time steps, none of the simulation converges due to
severe stability requirement of Runge-Kutta methods. For instance, for a typical
simulation in Table 1 with Dirichlet boundary condition with Nx ×Ny = 2562 and
r1 = r2 = 1, the second order Runge-Kutta method takes 152.34 CPU seconds in
order to achieve the same accuracy as cIIF, while due to its efficiency and excellent
stability condition, the proposed cIIF method only takes 11.13 seconds (13 − 14
times faster).

Example 2. Next we consider a similar linear problem in three dimensions,{
∂u
∂t

= −∆2u+ 12π4u, (x, y, z) ∈ Ω, t ∈ [0, T ],

u|t=0 = sinπ(x− 1
4 ) cos 2π(y − 1

8 ) sinπz, (x, y, z) ∈ Ω,
(47)

where Ω = [−1, 1]× [−1, 1]× [−1, 1] and T = 5
12π4 . The exact solution of the above

equation takes the following form,

u(x, y, z, t) = e−24π4t sinπ
(
x− 1

4

)
cos 2π

(
y − 1

8

)
sinπz. (48)

The three boundary conditions are again imposed correspondingly from the exact
solution.

We first apply the second-order cIIF scheme as presented in (44) to solve the
equation (47). Similar to the two dimensional case, the second-order accuracy
in both time and space can be observed (see Tables 2). Due to high demanding
computational cost and storage in three dimensions, we choose a uniform relatively
fine spatial grid Nx = Ny = Nz = 128 to test the third-order (in time) cIIF scheme
in time discretization. Since the order accuracy will be compromised between space
(second-order) and time (third-order), a high order accuracy (bigger than 2 but less
than 3) is again observed as expected.

Example 3. For this example, we consider a bi-Laplace operator with a nonlinear
interaction term in two dimensions,∂u∂t = − 1

40π2 ∆2u− sin2 u
10 , (x, y) ∈ Ω, t ∈ [0, T ],

u|t=0 = sinπ(x− 1
4 ) sinπ(y − 1

8 ), (x, y) ∈ Ω,
(49)

where Ω = [−1, 1] × [−1, 1] and T = 1. Inhomogeneous Dirichlet or Neumann
boundary conditions are imposed along the time evolution. For instance, the inho-
mogeneous Dirichlet boundary conditions are given by{

u = e−t sinπ(x− 1
4 ) sinπ(y − 1

8 ),

∆u = −2π2e−t sinπ(x− 1
4 ) sinπ(y − 1

8 ),

and the inhomogeneous Neumann boundary conditions are given by

∂u

∂x
= πe−t cosπ(x− 1

4 ) sinπ(y − 1
8 ),

∂u

∂y
= πe−t sinπ(x− 1

4 ) cosπ(y − 1
8 ),

∂∆u

∂x
= −2π3e−t cosπ(x− 1

4 ) sinπ(y − 1
8 ),

∂∆u

∂y
= −2π3e−t sinπ(x− 1

4 ) cosπ(y − 1
8 ),
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(Nx ×Ny ×Nz) ×Nt L2 Error Order L∞ Error Order CPU (s)

Dirichlet Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(163) × 16 6.61e-02 - 4.88e-02 - 0.48

(323) × 32 1.52e-02 2.12 1.13e-02 2.11 4.89

(643) × 64 3.71e-03 2.03 2.76e-03 2.03 95.00

(1283) × 128 9.22e-04 2.01 6.86e-04 2.01 3185.65

Accuracy test of the cIIF scheme with r1 = r2 = 2

(1283) × 4 4.67e-03 - 4.37e-03 - 98.19

(1283) × 8 8.39e-04 2.48 7.15e-04 2.61 188.35

(1283) × 16 1.14e-04 2.88 1.00e-04 2.84 368.35

(1283) × 32 1.46e-05 2.96 1.32e-05 2.92 727.60

Neumann Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(163) × 16 1.42e+00 - 1.34e+00 - 0.51

(323) × 32 3.52e-01 2.01 3.34e-01 2.00 5.95

(643) × 64 8.77e-02 2.00 8.33e-02 2.00 140.31

(1283) × 128 2.19e-02 2.00 2.08e-02 2.00 2943.77

Accuracy test of the cIIF scheme with r1 = r2 = 2

(1283) × 4 5.01e-02 - 5.20e-02 - 105.54

(1283) × 8 9.36e-03 2.42 9.64e-03 2.43 201.26

(1283) × 16 1.53e-03 2.61 1.56e-03 2.63 392.71

(1283) × 32 3.05e-04 2.37 2.97e-04 2.39 776.63

Periodic Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(163) × 16 1.24e-04 - 8.64e-05 - 0.20

(323) × 32 2.05e-05 .60 1.44e-05 2.60 2.89

(643) × 64 4.64e-06 2.14 3.28e-06 2.13 86.97

(1283) × 128 1.13e-06 2.04 8.01e-07 2.03 3916.57

Accuracy test of the cIIF scheme with r1 = r2 = 2

(1283) × 4 7.34e-06 - 5.19e-06 - 113.15

(1283) × 8 1.16e-06 2.66 8.22e-07 2.66 221.40

(1283) × 16 1.78e-07 2.70 1.38e-07 2.57 478.65

(1283) × 32 2.96e-08 2.59 2.56e-08 2.43 917.23

Table 2. Errors and convergence rates at the final time T = 5
12π4

of Example 2 (3D linear case) with inhomogeneous Dirichlet bound-
ary condition, Neumann boundary condition and Periodic boundary
condition respectively. The units of CPU times are in seconds (s).

for (x, y) ∈ ∂Ω, t ∈ [0, T ].
As an example, the numerical solutions of the equation (49) with Dirichlet and

Neumann boundary conditions at the final time T = 1 obtained by using the second-
order cIIF scheme on a grid of size (Nx×Ny)×Nt = (2562)×128 are plotted in Figure
2. For this case, we check order of accuracy in time discretization by a numerical
resolution study. Since the exact solution is not known for the problem (49), the
approximate solution by using the third-order (in time) cIIF scheme on a uniform
fine grid 2048 × 2048 along with a very small time step ∆t = 10−4, is considered
as the “exact” solution. The L2 and L∞ errors are measured between numerical
solutions with such “exact” solution. The results of errors and convergence rates in
time discretization can be found from Table 3, which coincide with our expectation
very well.
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Figure 2. Plot of the numerical solutions u of Example 3 with
Dirichlet boundary condition (left) and Neumann boundary condi-
tion (right) at the final time T = 1 that are obtained by using the
second-order cIIF scheme on a grid of size (Nx×Ny)×Nt = (2562)×
128.

Example 4. In this example, we consider a system of bi-Laplace equations with
nonlinear interactios in two dimensions,

∂u
∂t

= − 1
10π2 ∆2u− sin2 u cos v

2 , (x, y) ∈ Ω, t ∈ [0, T ],

∂v
∂t

= − 1
5π2 ∆2v − cos2 v sinu

2 , (x, y) ∈ Ω, t ∈ [0, T ],

u|t=0 = sinπ(x− 1
2 ) cosπ(y − 1

4 ), (x, y) ∈ Ω,

v|t=0 = cosπ(x− 1
2 ) sinπ(y − 1

4 ), (x, y) ∈ Ω,

(50)

where Ω = [−1, 1] × [−1, 1] and T = 1. Inhomogeneous Dirichlet or Neumann
boundary conditions are imposed along the time evolution. For instance, the inho-
mogeneous Dirichlet boundary conditions are given by{

u = e−2t sinπ(x− 1
2
) cosπ(y − 1

4
), v = e−2t cosπ(x− 1

2
) sinπ(y − 1

4
),

∆u = −2π2e−2t sinπ(x− 1
2
) cosπ(y − 1

4
), ∆v = −2π2e−2t cosπ(x− 1

2
) sinπ(y − 1

4
),

and the inhomogeneous Neumann boundary conditions are given by

∂u

∂x
= πe−2t cosπ(x− 1

2
) cosπ(y − 1

4
),
∂u

∂y
= −πe−2t sinπ(x− 1

2
) sinπ(y − 1

4
),

∂∆u

∂x
= −2π3e−2t cosπ(x− 1

2
) cosπ(y − 1

4
),
∂∆u

∂y
= 2π3e−2t sinπ(x− 1

2
) sinπ(y − 1

4
),

∂v

∂x
= −πe−2t sinπ(x− 1

2
) sinπ(y − 1

4
),
∂v

∂y
= πe−2t cosπ(x− 1

2
) cosπ(y − 1

4
),

∂∆v

∂x
= 2π3e−2t sinπ(x− 1

2
) sinπ(y − 1

4
),
∂∆v

∂y
= −2π3e−2t cosπ(x− 1

2
) cosπ(y − 1

4
),

for (x, y) ∈ ∂Ω, t ∈ [0, T ]. For this example, we check the order of accuracy in
time discretization with the second order cIIF scheme by a numerical resolution
study. Since the exact solution is not known for the problem (50), once again the
approximate solution by using the third-order (in time) cIIF scheme on a uniform
fine grid 2048 × 2048 along with a very small time step ∆t = 10−4, is considered
as the “exact” solution. Both L2 and L∞ errors are measured between numerical
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(Nx ×Ny) ×Nt L2 Error Order L∞ Error Order

Dirichlet Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 0

(20482) × 16 2.19e+00 - 8.06e+00 -

(20482) × 32 1.32e+00 0.73 4.44e+00 0.86

(20482) × 64 6.21e-01 1.09 2.07e+00 1.10

(20482) × 128 3.42e-01 0.94 1.05e+00 0.98

Accuracy test of the cIIF scheme with r1 = r2 = 1

(20482) × 16 3.82e+00 - 4.16e+00 -

(20482) × 32 9.85e-01 1.96 1.17e+00 1.83

(20482) × 64 2.43e-01 2.02 2.73e-01 2.10

(20482) × 128 5.81e-02 2.06 6.90e-02 1.98

Accuracy test of the cIIF scheme with r1 = r2 = 2

(20482) × 16 3.71e+00 - 5.34e+00 -

(20482) × 32 5.13e-01 2.85 7.09e-01 2.91

(20482) × 64 7.12e-02 2.85 8.83e-02 3.01

(20482) × 128 9.46e-03 2.91 1.13e-02 2.97

Neumann Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 0

(20482) × 16 2.06e+00 - 6.73e+00 -

(20482) × 32 1.05e+00 0.97 3.35e+00 1.01

(20482) × 64 5.15e-01 1.03 1.58e+00 1.08

(20482) × 128 2.57e-01 1.00 7.37e-01 1.10

Accuracy test of the cIIF scheme with r1 = r2 = 1

(20482) × 16 1.63e+00 - 1.74e+00 -

(20482) × 32 4.14e-01 2.01 4.35e-01 2.01

(20482) × 64 1.06e-01 2.00 1.21e-01 1.98

(20482) × 128 2.56e-02 2.00 2.96e-02 1.98

Accuracy test of the cIIF scheme with r1 = r2 = 2

(20482) × 16 1.23e+00 - 2.32e+00 -

(20482) × 32 1.73e-01 2.83 3.34e-01 2.80

(20482) × 64 2.26e-02 2.94 4.29e-02 2.96

(20482) × 128 3.03e-03 2.90 5.50e-03 2.96

Table 3. Errors and convergence rates at the final time T of Ex-
ample 3 (2D semilinear case) with Dirichlet boundary condition and
Neumann boundary condition respectively.

solutions with such “exact” solution. From Table 4, the second order convergence
rate can be again observed as expected.

5. Conclusions. In high spatial dimensions, the compact representation of inte-
gration factor approach was found to be very efficient for solving systems involving
high-order spatial derivatives and reactions with drastically different time scales,
which in general demand temporal schemes with severe stability constraints. Un-
like the non-compact form, it is difficult to apply cIIF directly to handle diffusion
terms with cross derivatives. In this paper, we have developed a cIIF method for
solving a class of semilinear fourth-order parabolic equations. Because of such rep-
resentation, computing exponentials of large matrices is reduced to the calculation
of exponentials of matrices of significantly smaller sizes, in which the dimension
of discretized matrices is the same as one dimensional case and the stability con-
dition and computational savings and storage are similar to the original cIIF for
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(Nx ×Ny) ×Nt L2 Error Order L∞ Error Order

Dirichlet Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(20482) × 16 4.52e+00 - 4.96e+00 -

(20482) × 32 1.24e+00 1.87 1.35e+00 1.88

(20482) × 64 3.01e-01 2.04 3.22e-01 2.02

(20482) × 128 7.48e-02 2.01 8.24e-02 2.01

Neumann Boundary Condition

Accuracy test of the cIIF scheme with r1 = r2 = 1

(20482) × 16 2.45e+00 - 2.68e+00 -

(20482) × 32 6.11e-01 2.00 6.69e-01 2.00

(20482) × 64 1.51e-01 2.02 1.71e-01 1.97

(20482) × 128 3.72e-02 2.02 4.31e-02 1.99

Table 4. Errors and convergence rates at the final time T = 1 of
Example 4 (2D system case) with Dirichlet boundary condition and
Neumann boundary condition respectively.

the second-order problem. In addition, the direct and explicit incorporation of
inhomogeneous boundary conditions into the cIIF is also proposed.

Although compact representation has been presented only in the context of im-
plicit integration factor methods for semilinear fourth-order parabolic equations,
such approach can easily be applied to other integration factor or exponential differ-
ence methods. Other type of equations of high-order derivatives, (e.g. Cahn-Hilliard
equations of fourth-order derivatives) may also potentially be handled using the ap-
proach for better efficiency. To better deal with high spatial dimensions, one may
incorporate the sparse grid [23] into the compact representation technique. The
flexibility of compact representation allows either direct calculation of the expo-
nentials of matrices or using Krylov subspace [4, 10, 22] for non-constant diffusion
coefficients to compute their exponential matrix-vector multiplications for saving
further in storages and cost. In addition, the presented approach based on the fi-
nite difference framework for spatial discretization could also be extended to other
discretization methods such as finite volume [8, 11, 17] or spectral methods [3, 24].
Overall, the compact representation along with integration factor methods provides
an efficient approach for solving a wide range of problems arising from biological and
physical applications. Given to its effectiveness in implementation and good stabil-
ity conditions, the method is very desirable to be incorporated with local adaptive
mesh refinement [1, 2, 18], which will also be further explored in the future work.
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