A More Rigorous Approach to Limits

Douglas Meade, Ronda Sanders, and Xian Wu
Department of Mathematics

Overview

The rigorous $\epsilon-\delta$ definition of limits can be difficult for students to grasp. This lab is designed to provide visual and interactive tools for working with these concepts.

Maple Essentials

- The EpsilonDelta maplet is available from the course website:

$$
\text { http://www.math.sc.edu/calclab/141L-F07/labs/ } \rightarrow \text { EpsilonDelta }
$$

Related course material/Preparation

$\S 2.4$ (Pages 134-143) of the textbook (Anton, 8th edition). Let us first recall the definition of limit given there: Let $f(x)$ be defined for all x in some open interval containing the number a, with the possible exception that $f(x)$ need not be defined at a. We will write $\lim _{x \rightarrow a} f(x)=L$ if given any number $\epsilon>0$ we can find a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \text { if } 0<|x-a|<\delta .
$$

In general, ϵ and δ are meant to be very small numbers. Therefore, intuitively, the definition states that $f(x)$ will be very close to L that is, $|f(x)-L|<\epsilon$, when x is very close to a $(|x-a|<\delta)$. The task is to show that, for any given ϵ (no matter how close $f(x)$ is to L), you can always find a δ-needed closeness of x to a-to make it work.

Activities

From our discussion, our job is to find a δ for a given ϵ such that, when $a-\delta<x<a+\delta$, the inequality $|f(x)-L|<\epsilon$ holds. Therefore, we need to solve for a range $a-\delta<x<a+\delta$ of x from the given inequality $|f(x)-L|<\epsilon$. Ideally, we would like to find a formula of δ in terms of ϵ (see examples 1,2 , and 3 of $\S 2.4$) that will work for any given ϵ. However, such formulas are in general very hard to find. Moreover, the value of δ is not unique, as any value that is smaller than a solution would work, too. For each of the limits below, we will use Maple's solve command to help us to find the largest δ that works for the given ϵ and the interactive EpsilonDelta maplet provides a tool to visualize relations between δ and ϵ.
(Follow the General Directions on the back of this page.)

1. $\lim _{x \rightarrow 9} \sqrt{x}=3, \epsilon=0.15, \epsilon=0.05$
2. $\lim _{x \rightarrow 3} \frac{x^{2}-9}{x-3}=6, \epsilon=0.2, \epsilon=0.05$
3. $\lim _{x \rightarrow 3}(5 x-2)=13, \epsilon=.05, \epsilon=.01$
4. $\lim _{x \rightarrow 2}\left(x^{2}+3 x-1\right)=9, \epsilon=0.8, \epsilon=0.6$

Hint: Since we also have $\lim _{x \rightarrow-5}\left(x^{2}+3 x-1\right)=9$, Maple's solve command will return extra solutions. Which interval should you choose for problem 4?

Use Maple's solve command to solve inequalities

Maple's solve command was introduced in the Lab 4 to solve equations. It can also be used to solve inequalities. We will input most of our inequalities as follows:
$>$ solve $(\operatorname{abs}(\mathrm{f}(\mathrm{x})-\mathrm{L})<\epsilon, \mathrm{x})$;
For example, if we want to know where $|\sqrt{x}-2|<0.05$ we would use the following command $>$ solve(abs(sqrt(x)-2) < 0.05, x);
and Maple would return the interval $(3.8025,4.2025)$ as the solution (your TA will explain Maple's notation)

General Directions

1. Look at the limit and identify $f(x), L, a$, and ϵ.
2. Launch the EpsilonDelta maplet and click Modify or Make Your Own Problem. Enter the function $f(x), a, L$, and ϵ.
3. Click Save Problem and Close. You should see the graph of $f(x)$ in blue with a cyan vertical stripe that goes from $a-\delta$ to $a+\delta$ and a pink horizontal stripe that goes from $L-\epsilon$ to $L+\epsilon$. You should also see a brown rectangle extends vertically from the smallest value of $f(x)$ to the largest value of $f(x)$ for x from $a-\delta$ to $a+\delta$. You may change the size of this rectangle by changing the value of δ, which can be done using the slider (for $0.1 \leq \delta \leq 1$) or by typing in (any value).
4. Your task is to determine the largest value of δ that keeps the brown rectangle completely inside the pink stripe. You can use Zoom In to increase the accuracy.

5 . When you think you are done, record your final value of δ.
6. Now we will find the value of δ more precisely using Maple's solve command.
7. Use the arrow notation $(:=x->)$ to define the function $f(x)$. Use $:=$ to assign L, a, and epsilon to their respective values.
8. Use the solve command as follows $>$ solve $(\operatorname{abs}(\mathrm{f}(\mathrm{x})-\mathrm{L})<$ epsilon, x$)$; Maple should return an interval or intervals.
9. Choose the interval that contains a. Find the distances from a to the left bound and from a to the right bound of the interval (both of them should be positive.) The smallest of these two values is the largest δ that works for this ϵ.
10. Your values from the EpsilonDelta maplet and from using the solve command should be very close.

Remark:

For some simple functions like linear functions, solve can be used to find general formulas of δ in term of ϵ. Try the following and compare it to problem 3:

$$
\text { solve }\left(\operatorname{abs}\left(5^{*} \mathrm{x}-2-13\right)<\text { epsilon, } \mathrm{x}\right) \text { assuming epsilon }>0 ;
$$

Assignment

Exercises 9, 12, and 13 in $\S 2.4$ on page 141. Review Labs 1-5 for next week's Hour Quiz 1 (to be completed in lab).

