A More Rigorous Approach to Limits

Douglas Meade, Ronda Sanders, and Xian Wu Department of Mathematics

Overview

The rigorous ϵ - δ definition of limits can be difficult for students to grasp. This lab is designed to provide visual and interactive tools for working with these concepts.

Maple Essentials

• The *EpsilonDelta* maplet is available from the course website:

 $\texttt{http://www.math.sc.edu/calclab/141L-F07/labs/} \rightarrow EpsilonDelta$

Related course material/Preparation

§2.4 (Pages 134-143) of the textbook (Anton, 8th edition). Let us first recall the definition of limit given there: Let f(x) be defined for all x in some open interval containing the number a, with the possible exception that f(x) need not be defined at a. We will write $\lim_{x\to a} f(x) = L$ if given any number $\epsilon > 0$ we can find a number $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
 if $0 < |x - a| < \delta$.

In general, ϵ and δ are meant to be very small numbers. Therefore, intuitively, the definition states that f(x) will be very close to L that is, $|f(x) - L| < \epsilon$, when x is very close to a ($|x - a| < \delta$). The task is to show that, for any given ϵ (no matter how close f(x) is to L), you can always find a δ -needed closeness of x to a-to make it work.

Activities

From our discussion, our job is to find a δ for a given ϵ such that, when $a - \delta < x < a + \delta$, the inequality $|f(x) - L| < \epsilon$ holds. Therefore, we need to solve for a range $a - \delta < x < a + \delta$ of x from the given inequality $|f(x) - L| < \epsilon$. Ideally, we would like to find a formula of δ in terms of ϵ (see examples 1, 2, and 3 of §2.4) that will work for any given ϵ . However, such formulas are in general very hard to find. Moreover, the value of δ is not unique, as any value that is smaller than a solution would work, too. For each of the limits below, we will use Maple's solve command to help us to find the largest δ that works for the given ϵ and the interactive EpsilonDelta maplet provides a tool to visualize relations between δ and ϵ .

(Follow the General Directions on the back of this page.)

1.
$$\lim_{x\to 9} \sqrt{x} = 3$$
, $\epsilon = 0.15$, $\epsilon = 0.05$

2.
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3} = 6$$
, $\epsilon = 0.2$, $\epsilon = 0.05$

3.
$$\lim_{x \to 3} (5x - 2) = 13$$
, $\epsilon = .05$, $\epsilon = .01$

4.
$$\lim_{x \to 2} (x^2 + 3x - 1) = 9$$
, $\epsilon = 0.8$, $\epsilon = 0.6$

HINT: Since we also have $\lim_{x\to -5} (x^2 + 3x - 1) = 9$, Maple's solve command will return extra solutions. Which interval should you choose for problem 4?

Fall 2007 Created 9/18/2007

Use Maple's solve command to solve inequalities

Maple's solve command was introduced in the Lab 4 to solve equations. It can also be used to solve inequalities. We will input most of our inequalities as follows:

> solve(abs(f(x)-L) $< \epsilon$, x);

For example, if we want to know where $|\sqrt{x}-2| < 0.05$ we would use the following command > solve(abs(sqrt(x)-2) < 0.05, x);

and Maple would return the interval (3.8025, 4.2025) as the solution (your TA will explain Maple's notation)

General Directions

- 1. Look at the limit and identify f(x), L, a, and ϵ .
- 2. Launch the *EpsilonDelta* maplet and click **Modify or Make Your Own Problem**. Enter the function f(x), a, L, and ϵ .
- 3. Click Save Problem and Close. You should see the graph of f(x) in blue with a cyan vertical stripe that goes from $a \delta$ to $a + \delta$ and a pink horizontal stripe that goes from $L \epsilon$ to $L + \epsilon$. You should also see a brown rectangle extends vertically from the smallest value of f(x) to the largest value of f(x) for x from $a \delta$ to $a + \delta$. You may change the size of this rectangle by changing the value of δ , which can be done using the slider (for $0.1 \le \delta \le 1$) or by typing in (any value).
- 4. Your task is to determine the largest value of δ that keeps the brown rectangle completely inside the pink stripe. You can use **Zoom In** to increase the accuracy.
- 5. When you think you are done, record your final value of δ .
- 6. Now we will find the value of δ more precisely using Maple's solve command.
- 7. Use the arrow notation (:=x->) to define the function f(x). Use := to assign L, a, and epsilon to their respective values.
- 8. Use the solve command as follows > solve(abs(f(x) L) < epsilon, x); Maple should return an interval or intervals.
- 9. Choose the interval that contains a. Find the distances from a to the left bound and from a to the right bound of the interval (both of them should be positive.) The *smallest* of these two values is the *largest* δ that works for this ϵ .
- 10. Your values from the *EpsilonDelta* maplet and from using the **solve** command should be very close.

Remark:

For some simple functions like linear functions, solve can be used to find general formulas of δ in term of ϵ . Try the following and compare it to problem 3:

solve(abs(5*x-2-13) < epsilon,x) assuming epsilon>0;

Assignment

Exercises 9, 12, and 13 in §2.4 on page 141. Review Labs 1-5 for next week's Hour Quiz 1 (to be completed in lab).

Fall 2007 Created 9/18/2007