## Answers to WS 8

1. a .

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =N_{1} \frac{100-N_{1}-2 N_{2}}{100} \\
\frac{d N_{2}}{d t} & =N_{2} \frac{150-N_{2}-3 N_{1}}{150}
\end{aligned}
$$

b. $N_{1}(1)=41.36, N_{2}(1)=28.31$
$N_{1}(2)=42.19, N_{2}(2)=27.86$
$N_{1}(3)=43.07, N_{2}(3)=27.04$
$N_{1}(14)=99.93, N_{2}(14)=0.33$
In the long run $N_{1}$ approaches its carrying capacity of $100, N_{2}$ becomes extinct.
2. a. $N_{1}(1)=78, N_{2}(1)=28.5$
$N_{1}(2)=84.045, N_{2}(2)=21.95$
$N_{1}(3)=88.23, N_{2}(3)=16.088$.
$N_{1}(12)=99.6, N_{2}(12)=.53$
In the long run $N_{1}$ approaches its carrying capacity of $100, N_{2}$ becomes extinct.
b. $N_{1}(1)=65, N_{2}(1)=42.7, N_{1}(2)=73.88, N_{2}(2)=36.2 N_{1}(3)=$ $79.8, N_{2}(3)=28$
$N_{1}(14)=99.6, N_{2}(13)=0.5$
In the long run $N_{1}$ approaches its carrying capacity of $100, N_{2}$ becomes extinct.
3. $N_{1}(1)=57.5, N_{2}(1)=89.8, N_{1}(2)=56.11, N_{2}(2)=100, N_{1}(3)=$ $52.7, N_{2}(3)=105.3, N_{1}(22)=40.155, N_{2}(22)=199.84$.

The equilibrium value ( $N_{1}=40, N_{2}=120$ ) with both populations coexisting is approached in the long run.

