Math 172 Fall 2012 WS 8

1. You are studying competition between red and black desert scorpions. The populations are measured in millions of individuals.

If only a single species is present, it would grow following the logistic model, with a carrying capacity $K_{1}=100$ for the red scorpion, and $K_{2}=150$ for the black scorpion.
a. Write the Lotka-Volterra comptetion model equations for the two species, assuming competion coefficients of $\alpha=2$ for the red scorpion, and $\beta=3$ for the black scorpion. Use $r_{1}=r_{2}=1$.
b. Assume the initial populations are 44 million red ants and 31 million black scorpions.Use Euler's method with $\Delta t=1$ in order to estimate the values of both populations at $t=1,2,3$. Also find the values of P_{1} and P_{2} at some large values of t. Is is up to you how large to choose t but it should be large enough to show the long run behavior of the systyem.
c. Sketch the state-space and show the values that you found in b. as points in the state-space. Which equilibrium value seems to be approached in the long run?
3. Repeat problem 1 with $r_{1}=r_{2}=1, K_{1}=100, K_{2}=150, \alpha=0.5, \beta=2$. Assume the initial values to be:
a. $N_{1}=80, N_{2}=45$
b. $N_{1}=50, N_{2}=40$.
4. Repeat the questions in problem 1 with $r_{1}=r_{2}=1, K_{1}=100, K_{2}=150, \alpha=0.5, \beta=$ 0.75. Assume the initial values of the population to be $N_{1}=50, N_{2}=70$.

