Answers to WS 7

1. $(36,38)$.

Note that the equations are given as recursive rather than difference equations. To solve for equilibrium set $u_{n-1}=u_{n}=u$ and $v_{n-1}=v_{n}=$ v.
2. a.

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =r_{1} N_{1}\left(\frac{100-N_{1}}{100}\right) \\
\frac{d N_{2}}{d t} & =r_{2} N_{2}\left(\frac{150-N_{2}}{150}\right)
\end{aligned}
$$

b.

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =r_{1} N_{1}\left(\frac{100-N_{1}-2 N_{2}}{100}\right) \\
\frac{d N_{2}}{d t} & =r_{2} N_{2}\left(\frac{150-N_{2}-3 N_{1}}{150}\right)
\end{aligned}
$$

c. The equilibrium values are $(0,0),(100,0),(0,150)$, and $(40,30)$.
d. In the short run species 1 decreases and species 2 increases. In the long run, species 1 becomes extinct, species 2 approaches equilibrium at its carrying capacity $K_{2}=150$.
3. The equilibrium values are $(0,0),(100,0)$, and $(0,150)$. There is no equilibrium value with both populations present. The two isoclines do not intersect. The isocline for species 1 is above the isocline for species 2 .
a. in the short run both species decrease.
b. in the short run population 1 increases and population 2 decreases.
c. in the short run, both populations increase.

Long term outcome: species 2 becomes extinct, species 1 approaches its carrying capacity $K_{1}=100$. This is the outcome regardless of where the initial value point is.
4. The equilibrium values are $(0,0),(100,0),(0,150),(40,120)$.

In the short run, both populations increase. The long term outcome: the two population coexist at the equilibrium value $(40,120)$ (stable equilibrium), because the arrows point towards this point no matter where the initial value is chosen.

