Math 172 Fall 2012 Worksheet 6

1.

$$
A \cdot u=\left[\begin{array}{l}
6 \\
3
\end{array}\right]
$$

which is not proportional to u (since $\frac{6}{1} \neq \frac{3}{2}$), so u is not an eigenvector.

$$
A \cdot v=\left[\begin{array}{c}
-12 \\
3
\end{array}\right]=-3 v
$$

so v is an eigenvector with corresponding eigenvalue -3 (since $\frac{-12}{4}=$ $\frac{3}{-1}=-3$).
2. a. $B_{1}=6 *(1.4) v_{1}-0.8 v_{2}, B_{2}=6 *(1.4)^{2} v_{1}-(0.8)^{2} v_{2}$
b. $B_{n}=6 *(1.4)^{n} v_{1}-(0.8)^{n} v_{2}$
c. and d. when n is sufficiently large, the general formula from part b. can be rounded off to $B_{n}=6 *(1.4)^{n} v_{1}$. This gives a total population size of $P_{n}=6 *(1.4)^{n} *(12+20)=192 *(1.4)^{n}$ (thus the total population size has exponential behavior with per capita growth rate $r=0.4$) and distribution vectors

$$
D_{n}=\left[\begin{array}{l}
0.375 \\
0.625
\end{array}\right]
$$

Since these disribution vectors do not depend on n, they give the value of the stable distribution vector.

3.

A frog population has three stages: tadpoles T_{n}, juveniles J_{n} and adults A_{n}.

Each year, 20% of tadpoles become juveniles and 80% of tadpoles die. There are no tadpoles that remain in the same stage at the next step. Also, 70% of juvenile become adults and 30% of juveniles die. There are no juveniles that remain in the same stage. 55% of adults survive, the rest die.

On average each adult produces 40 tadpoles a year. The tadpoles and juveniles don't reproduce.
a. $14 \% ; 0.7$
b. $38.5 \% ; 21.2 \%$
c. $30.3 \% ; 16.7 \%$
d. transition matrix:

$$
A=\left[\begin{array}{ccc}
0 & 0 & 40 \\
0.2 & 0 &) \\
0 & 0.7 & 0.55
\end{array}\right]
$$

population vector at $t=20$:

$$
B_{20}=\left[\begin{array}{c}
222,374,036 \\
21,509,873 \\
10,559,716
\end{array}\right]
$$

distribution vector at $t=20$:

$$
D_{20}=\left[\begin{array}{l}
0.874 \\
0.085 \\
0.041
\end{array}\right]
$$

e. The values for the total size of the population at times $t=$ $20, t=21, t=22$ are: $P_{20}=254,443,625 ; P_{21}=487,728,182 ; P_{22}=$ $961,675,883$. The ratios are

$$
\frac{P_{22}}{P_{21}}=1.972 \neq \frac{P_{21}}{P_{20}}=1.917
$$

Since the ratios are not the same we conclude that the population does not yet have exponential behavior at $t=21$ (perhaps one should explore what happens further, but I will accept this kind of answer as correct).

