Math 172 Spring 2012 Worksheet 5 Answers

1.

$$
\begin{aligned}
& A \cdot B=\left[\begin{array}{cc}
4+3 & 6-7 \\
8-9 & 12+21
\end{array}\right]=\left[\begin{array}{cc}
7 & -1 \\
-1 & 33
\end{array}\right] \quad B \cdot A=\left[\begin{array}{cc}
4+12 & -4+18 \\
-3+14 & 3+21
\end{array}\right]=\left[\begin{array}{ll}
16 & 14 \\
11 & 24
\end{array}\right] \\
& A \cdot C=\left[\begin{array}{c}
9-10 \\
18+30
\end{array}\right]=\left[\begin{array}{c}
-1 \\
48
\end{array}\right] \quad A^{2}=\left[\begin{array}{cc}
1-2 & -1-3 \\
2+6 & -2+9
\end{array}\right]=\left[\begin{array}{cc}
-1 & -4 \\
8 & 7
\end{array}\right]
\end{aligned}
$$

$C \cdot B$ is not possible.
2. A population consists of three age categories: children C_{n}, mature individuals M_{n}, and seniors S_{n}. The population vector B_{n} is

$$
B_{n}=\left[\begin{array}{c}
C_{n} \\
M_{n} \\
S_{n}
\end{array}\right]
$$

The process described below takes place during each step:
25% of the children become mature individuals; 3% of children die 45% of the mature individuals become seniors; 8% of the mature individuals die; each pair of mature individuals produces two children 30% of the seniors die.
a. The transition matrix is

$$
A=\left[\begin{array}{ccc}
0.72 & 1 & 0 \\
0.25 & 0.47 & 0 \\
0 & 0.45 & 0.7
\end{array}\right]
$$

The recursive equation in matrix form is: $B_{n+1}=A \cdot B_{n}$.
The formula for B_{n} is: $B_{n}=A^{n} \cdot B_{0}$.
b. Do on calculator:

$$
\begin{array}{cc}
B_{3}=A^{3} \cdot B_{0}=\left[\begin{array}{c}
175 \\
68 \\
137
\end{array}\right] & B_{4}=A^{4} \cdot B_{0}=\left[\begin{array}{c}
195 \\
76 \\
127
\end{array}\right] \\
B_{20}=A^{20} \cdot B_{0}=\left[\begin{array}{c}
1040 \\
406 \\
445
\end{array}\right] & B_{21}=A^{21} \cdot B_{0}=\left[\begin{array}{c}
1155 \\
451 \\
494
\end{array}\right]
\end{array}
$$

c. The total population at $n=3$ is 380 . To find the distribution vector, divide each entry in the vector B_{3} by 380 :

$$
D_{3}=\left[\begin{array}{c}
0.4605 \\
0.1789 \\
0.3605
\end{array}\right]
$$

Similarly we get

$$
D_{4}=\left[\begin{array}{l}
0.4899 \\
0.1910 \\
0.3191
\end{array}\right] \quad D_{20}=\left[\begin{array}{c}
0.55 \\
0.2147 \\
0.2353
\end{array}\right] \quad D_{21}=\left[\begin{array}{c}
0.55 \\
0.2148 \\
0.2352
\end{array}\right]
$$

The distribution vector changes from $n=3$ to $n=4$, which means that the population has not reached a stable state at $n=3$.

The distribution vectors at $n=20$ and $n=21$ are almost the same, so the population has almost reached a stable state at $n=20$ (but not quite).
d.

The total population at $n=20$ is $P_{20}=1891$ and at $n=21$ it is $P_{21}=2100$. In order to explore the issue of exponential behavior, we need to look at the ratio $P_{21} / P_{20}=1.11$. If this ratio remains the same as we increase n, that would mean that we have exponential behavior with a per-capita growth rate of 11% (so $P_{n+1}=(1+r) P_{n}$). In order to see whether this happens, we find P_{22}, P_{23} (do this on calculator: find the vectors B_{22}, B_{23} by doing $A^{22} \cdot B_{0}, A^{23} \cdot B_{0}$ and then add the three entries in each vector to find P_{22}, P_{23}). We find $P_{22}=2332, P_{23}=2591$ so the ratio of consecutive values is: $P_{23} / P_{22}=P_{22} / P_{21}=1.11$. Since the ratio is constant, we conclude that exponential behavior holds with a per capita growht rate of 11%.

