Math 172 Spring Fall 2012 Worksheet 3 Solutions

1. a. $\frac{d N}{d t}=1-\frac{N}{3}$
b. $\frac{d N}{1-\frac{N}{3}}=d t$
to integrate the left hand side let $u=1-\frac{N}{3}$ so $d u=-\frac{1}{3} d N$, so $d N=-3 d u$. The integral becomes $-3 \int \frac{d u}{u}=-3 \ln |u|+C_{1}=$ $-3 \ln \left|1-\frac{N}{3}\right|+C_{1}$,
and the integral for the right hand side is $t+C_{2}$. Setting the two integrals equal we get

$$
-3 \ln \left|1-\frac{N}{3}\right|+C_{1}=t+C_{2}
$$

Sovling for N :

$$
\ln \left|1-\frac{N}{3}\right|=-\frac{t}{3}+C
$$

Exponentiate:

$$
\left|1-\frac{N}{3}\right|=e^{C} \times e^{-\frac{t}{3}}
$$

If the initial value is $N(0)=0$ (this should have been specified in the problem) then the quantity inside the absolute value is positive so we have

$$
1-\frac{N}{3}=e^{C} \times e^{-\frac{t}{3}}
$$

Plug in $t=0$ to find that $1=e^{C}$ (again, assuming $N(0)=0$) so the equation becomes

$$
1-\frac{N}{3}=e^{-\frac{t}{3}}
$$

so $N(t)=3-3 e^{-t} 3$.
c. $t=3.3$ (approximately)
to graph the function on the calculator put the calculator back in function mode; use x for t and y for N; set your window to reflect the values you expect to see.
d. there is a stable equilibrium value of 3 ; this is reflected in the fact that the graph has a horizontal asymptote at $y=3$ (the values get closer and closer to 3).
2.

$$
\frac{d P}{d t}=0.02 P-12
$$

b. $P_{\text {equil }}=12 / 0.02=600$.
c.

$$
\frac{d P}{0.02 P-12}=d t
$$

to integrate the left hand side set $u=0.02 P-12$, so $d u=0.02 d P$, and $d P=\frac{d u}{0.02}$. The integral of the left hand side becomes

$$
\frac{1}{0.02} \int \frac{d u}{u}=\frac{1}{0.02} \ln |u|+C_{1}=\frac{1}{0.02} \ln |0.02 P-12|+C_{1}
$$

and the integral of the right hand side is $t+C_{2}$. Set the two integrals equal to each other:

$$
\frac{1}{0.02} \ln |0.02 P-12|+C_{1}=t+C_{2}
$$

Solve for P :

$$
\ln |0.02 P-12|=0.02 t+C
$$

Exponentiate:

$$
|0.02 P-12|=e^{C} \times e^{0.02 t}
$$

Note that the given initial value $P_{0}=700$ makes the quantity inside the absolute value positive, so the equation can be written as

$$
0.02 P-12=e^{C} e^{0.02 t}
$$

Plug in $t=0$ to find the numerical value for $e^{C}: 0.02 \times 700-12=e^{C}, \mathrm{~s}$ o $e^{C}=2$ and we obtain $0.02 P=12+2 e^{0.02 t}$. Thus

$$
P(t)=\frac{12}{0.02}+\frac{2}{0.02} e^{0.02 t}=600+100 e^{0.02 t}
$$

d. The population will reach 800 million at $t=34.6$ (approximately).
3. a. $\frac{d P}{d t}=-0.05 P+8$
b. $P_{\text {equil }}=\frac{8}{0.05}=160$. It is stable equilibrium.
c. The size of the population will approach the equilibrium value regradless of whether is starts above or below.
4. a. $\frac{d T}{d t}=k\left(T-T_{s}\right)$.
b. $\frac{d T}{d t}=-0.1(T-20)$
c. Separate the variables:

$$
\frac{d T}{T-20}=-0.1 d t
$$

Integrate each side and set the two integrals equal to each other:

$$
\ln |T-20|+C_{1}=-0.1 t+C_{2}
$$

Solve for T :

$$
\ln |T-20|=-0.1 t+C
$$

Exponentiate:

$$
|T-20|=e^{C} \times e^{-0.1 t}
$$

Note that the quantity inside the absolute value is positive, since the inital value is $T_{0}=90$, so the equation can be written as

$$
T-20=e^{C} \times e^{-0.1 t}
$$

Plug in $t=0$ to find the numerical value of $e^{C}: 90-20=e^{C}$, so $e^{C}=70$ and the equation becomes $T-20=70 e^{-0.1 t}$, so $T(t)=20+70 e^{-0.1 t}$.
d. $T(10)=45.75$.
e. $t=6.9$ minutes (found from the graph; can also be solved for algebraically).
5. a. $r(0)=3>0$ so increasing
b. set $r(t)=0$ and solve for $t:-0.8 t+3=0$ so $t=3.75$ years (this is the moment when $r(t)$ changes from positive to negative).
c. separate the variables: $\frac{d P}{P}=(-0.8 t+3) d t$
integrate each side and set the two integrals equal to each other:

$$
\ln (P)+C_{1}=-0.8 \frac{t^{2}}{2}+3 t+C_{2}
$$

Solve for P :

$$
\ln (P)=-0.4 t^{2}+3 t+C
$$

exponentiate: $P=e^{C} \times e^{-0.4 t^{2}+3 t}=P_{0} e^{-0.4 t^{2}+3 t}$
d. it will decline to extinciton.
6. A population of salamanders is down to 100 individuals, when the Nature Conservancy begins environmental remediation of their habitat. The per capita growth rate of the population is now (at $t=0$) at $r=-0.02$ and it is assumed to increase linearly in such a way that at $t=40$ we will have $r(40)=0$ (and thereafter r becomes positive).
a. Find the formula for the linear function $r(t)$. The general formula for a linear function is $r(t)=m t+b$ where $b=r(0)=-0.02$ (the y intercept). To find the value of m plug in $t=40$; we get $40 m-0.02=0$ so $m=0.02 / 40=0.0005$.
b. separate variables:

$$
\frac{d P}{P}=r(t) d t=(0.0005 t-0.02) d t
$$

integrate each side and set the two integrals equal to each other:

$$
\ln (P)+C_{1}=0.0005 t^{2} / 2-0.02 t+C_{2}
$$

solve for P :

$$
\ln (P)=\frac{2.5}{10^{4}} t^{2}-0.02 t+C
$$

exponentiate: $P=e^{C} \times e^{\frac{2.5}{10^{4}} t^{2}-0.02 t}=P_{0} \times e^{\frac{2.5}{14^{4}} t^{2}-0.02 t}$
c. increases without bound

