Math 172 Fall 2012 WS 10 Answers

1. The equation for $d P / d t$ is

$$
\frac{d P}{d t}=-q P+\beta V P
$$

The equation for $d V / d t$:
a.

$$
\frac{d V}{d t}=r V-\alpha V P
$$

b.

$$
\frac{d V}{d t}=r V-\frac{k V}{D+V} P
$$

c.

$$
\frac{d V}{d t}=r V\left(1-\frac{V}{K}\right)-\alpha V P=r V-c V^{2}-\alpha V P
$$

d.

$$
\frac{d V}{d t}=r V\left(1-\frac{V}{K}\right)-\frac{k V}{D+V} P=r V-c V^{2}-\frac{k V}{D+V} P
$$

2. a. Logistic behavior with carrying capacity of 500 , because when $P=$) the equation becomes

$$
\frac{d V}{d t}=10 V-0.02 V^{2}=10 V\left(1-\frac{0.02}{10} V\right)=10 V\left(1-\frac{V}{500}\right)
$$

b. $(0,0),(500,0)$.
c. For the equation of $d P / d t$ to be zero, we need $V=40$. Now plug this into the equation of $d V / d t$. After V is factored out, this equation becomes

$$
10-0.02 V-\frac{1.2}{20+V} P=0
$$

when we plug in $V=40$ we get $9.2-0.02 P=0$ and solving for P gives $P=9.2 / 0.02=460$. Thus the equilibrium pair is $(40,460)$.
d. The isocline for P has equation $V=40$. This is a vertical line.

The isocline for V has equation

$$
10-0.02 V-\frac{1.2}{20+V} P=0
$$

which we can write as

$$
\begin{equation*}
P=\frac{(10-0.02 V)(20+V)}{1.2} \tag{1}
\end{equation*}
$$

This is the equation of an upside-down parabola.
e. By plugging in $V=200$ in the equation (1) of the isocline above, we find $P=1100$; by plugging in $V=400$ we find $P=700$.
f. $R(V)=\frac{1.2 V}{20+V}$
g. 1.2
h. 20
3. a. exponential growth at a per-capita rate of 1000
b. $(0,0)$.
c. The equation of P implies $V=40$. Factor out V from the equation of V, then plug in $V=40$:

$$
10-\frac{1.2 V}{400+V^{2}} P=0
$$

when we plug in $V=40$ the equation becomes $10-0.024 P=0$, so $P=10 / 0.024=416.7$. The equilibrium pair is $(40,416.7)$
d. The isocline for P has equation $V=40$; this is a vertical line. The isocline for V has equation

$$
10-\frac{1.2 V}{400+V^{2}} P=0
$$

which we can write as $4000+10 V^{2}-1.2 V P$; in order to graph this on the graphing calculator you can solve for P in terms of $V: P=\left(4000+10 V^{2}\right) / 1.2 V$ and graph this as a function by using x for V and y for P).
e. when $V=200, P=1683$. When $V=400, P=3342$.
f. $R(V)=\frac{1.2 V^{2}}{400+V^{2}}$
g. 1.2
h. 20

