Populations with age structures

Consider the discrete process described below:
A population consists of three age classes: children (C), mature individuals (M), and older individuals (O).

At each step, 50% of children become mature individual and 2% of children die; 30% of mature individuals become old, and 5% of them die; 40% of the old individuals die. Moreover, at each step each pair of mature individuals produces 3 children (thus a total of $3 * \mathrm{M} / 2$ children are produced).

This process can be described by the following system of three recursive equations:

$$
\begin{aligned}
C_{n+1} & =0.48 C_{n}+1.5 M_{n} \\
M_{n+1} & =0.5 C_{n}+0.65 M_{n} \\
O_{n+1} & =0.3 M_{n}+0.6 O_{n}
\end{aligned}
$$

In matrix form, this can be written as

$$
\left[\begin{array}{c}
C_{n+1} \\
M_{n+1} \\
O_{n+1}
\end{array}\right]=\left[\begin{array}{ccc}
0.48 & 1.5 & 0 \\
0.5 & 0.65 & 0 \\
0 & 0.3 & 0.6
\end{array}\right]\left[\begin{array}{c}
C_{n} \\
M_{n} \\
O_{n}
\end{array}\right]
$$

The 3×3 (3 rows and 3 columns) matrix

$$
A=\left[\begin{array}{ccc}
0.48 & 1.5 & 0 \\
0.5 & 0.65 & 0 \\
0 & 0.3 & 0.6
\end{array}\right]
$$

is called the transition matrix.
You should learn how to enter matrices on your TI-83 or TI-84 calculator and perform matrix operations. Detailed instructions can be found at:
http://www.wscc.cc.tn.us/math/jlaprise/Calculator/MatricesonTI83.pdf
Continuing with our example, let's assume that an initial population vector is given:

$$
\left[\begin{array}{c}
C_{0} \\
M_{0} \\
O_{0}
\end{array}\right]=\left[\begin{array}{c}
0 \\
200 \\
0
\end{array}\right]
$$

Let us denote the initial population vector as B. This should be entered on the calculator as a 3×1 matrix (3 rows and 1 column).

We can use the transition matrix in order to calculate the population vector after any given number of steps:
after 1 step: $B_{1}=A * B$
after 2 steps: $B_{2}=A^{2} * B$
after n steps: $B_{n}=A^{n} * B$ (these operations can be performed on the calculator).

We obtain the following values:

$$
B_{1}=\left[\begin{array}{c}
300 \\
130 \\
60
\end{array}\right] \quad B_{2}=\left[\begin{array}{c}
339 \\
234.5 \\
75
\end{array}\right] \quad B_{3}=\left[\begin{array}{c}
514 \\
322 \\
115
\end{array}\right] \quad B_{4}=\left[\begin{array}{c}
730 \\
466 \\
166
\end{array}\right]
$$

Recall that if we simplify our assumptions and just consider a population M consisting entirely of mature individuals that produces 1.5 M offspring at each time step, we would have an exponential model with $\Delta M=1.5 M$; when written as a recursive equation this is the same as $M_{n+1}=2.5 M_{n}$.

Main Question: Do populations with age structure behave in an exponential manner? By an exponential behavior we mean a recursive equation of the form $P_{n+1}=(1+r) P_{n}$, with a constant value of r.

In order to study this question, let us consider the total size of the population $P_{n}=C_{n}+M_{n}+O_{n}$. We have the following values:

n	0	1	2	3	4	5	6	7	8
P	200	490	648	951	1362	1957	2809	4033	5789

Notice that $P_{1}=2.5 P_{0}, P_{2}=1.3 P_{1}, P_{3}=1.47 P_{2}, P_{4}=1.432 P_{3}$, $P_{5}=1.437 P_{4}, P_{6}=1.4354 P_{5}, P_{7}=1.4357 P_{6}, P_{8}=1.4354 P_{7}$.

It appears that in the long run we have an exponential behavior: $P_{n+1}=(1+r) P_{n}$ with $1+r \cong 1.435$, so $r \cong 0.435$.

Let us confirm this by choosing a large value of n such as $n=20$ (if we choose a number much larger than this your calculator won't be able to complete the calculation). Compute the population vectors $B_{20}=A^{20} * B_{0}$ and $B_{21}=A^{21} * B_{0}$ and find the total population P_{20} and P_{21} by adding the entries in each one of these vectors.

I get $P_{20}=442027, P_{21}=634391$, and $P_{21} / P_{20}=1.435$, which confirms the prediction that in the long run this population will behave in an exponential manner with $r=0.435$.

Operations with matrices and vectors

The notation A^{n} above stands for multiplying the matrix A times itself n times. Multiplication of matrices is an algbraic operation that we discuss below. In this class, we will multiply a matrix times itself (as in taking a power) and we will also multiply a matrix times a vector.

In general one can multiply a $m \times n$ matrix by a $n \times p$ matrix B and the result will be a $m \times p$ matrix. In particular if one multiplis an $m \times n$ matrix by an n-dimensional vector (which can be viewed as a $n \times 1$ matrix) the result will be a m-dimensional vector.

In order to multiply two matrices $A * B$, it is helpful to visualize the first matrix divided into rows and the second matrix divided into columns. In order to fill in the position in row i and column j of the resulting matrix, one does the dot product of the row i in matrix A and the column j in matrix B. The dot product means that the elements in corresponding positions are multiplied together, and then the results are added.

Here is how to multiply 2×2 matrices:

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] *\left[\begin{array}{cc}
x & y \\
z & w
\end{array}\right]=\left[\begin{array}{ll}
a x+b z & a y+b w \\
c x+d z & c y+d w
\end{array}\right]
$$

Here is how to multiply a 3×3 matrix by a 3 -dimensional vector:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] *\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right]
$$

