Eigenvalues and Eigenvectors of a matrix

Let A be an $n \times n$ matrix and B a $n \times 1$ vector.
We say that the vector B is an eigenvector for the matrix A if there exists a constant λ (called the eigenvalue associated to the eigenvector $B)$ such that

$$
A \cdot B=\lambda B
$$

In other words, the requirement for B to be an eigenvector for the matrix A is that the vector $A \cdot B$ is proportional to B, and the corresponding eigenvalue λ is the constant of proportionality.

Examples: Consider

$$
A=\left[\begin{array}{ll}
2 & 5 \\
6 & 1
\end{array}\right] \quad B=\left[\begin{array}{c}
5 \\
-5
\end{array}\right] \quad C=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

We have

$$
A \cdot B=\left[\begin{array}{c}
-15 \\
25
\end{array}\right]
$$

This vector is not proportional to B since $-15 / 5 \neq 25 /-5$. Thus B is not an eigenvector for the matrix A.

$$
A \cdot C=\left[\begin{array}{l}
21 \\
21
\end{array}\right]
$$

This vector is proportional to $C: 21 / 3=21 / 3=7$, in other words $A \cdot C=7 C$. The corresponding eigenvalue is $\lambda=7$.

Now we return to the study of populations with age structures.
Recall that the population at time n is represented by a vector

$$
B_{n}=\left[\begin{array}{c}
C_{n} \\
M_{n} \\
O_{n}
\end{array}\right]
$$

which satisfies the recursive equation $B_{n+1}=A \cdot B_{n}$, where A is the transition matrix.

We will explore how the eigenvalues and eigenvectors of the transition matrix A relate to the notions of stable state for the population vector, and exponential behavior for the total population size.

Recall the definitions:
The distribution vector at step n is

$$
D_{n}=\left[\begin{array}{c}
C_{n} / P_{n} \\
M_{n} / P_{n} \\
O_{n} / P_{n}
\end{array}\right]
$$

where $P_{n}=C_{n}+M_{n}+O_{n}$.

We say that the population has reached a stable state at step n if $D_{n}=D_{n+1}$. That is, if the distribution vector does not change when we go to the next step. The distribution vector D_{n} achieved when the population reaches a stable state is called the stable distribution of the population.

We say that the total size of the population has exponential behavior with per-capita growth rate r if $\frac{P_{n+1}}{P_{n}}=1+r$ whenever n is large enough (this means that the ratio $\frac{P_{n+1}}{P_{n}}=1+r$ stabilizes at a constant value).

Observation: If the population has reached stable state at step n, this means that the vector B_{n} is an eigenvector for the matrix A.

Indeed, stable state means that the vectors B_{n} / P_{n} and B_{n+1} / P_{n+1} coincide, where by B_{n} / P_{n} we mean the vector obtained by dividing each entry in B_{n} by the total population size P_{n}. Recalling that $B_{n+1}=$ $A B_{n}$, this equation can be written as

$$
\frac{A B_{n}}{P_{n+1}}=\frac{B_{n}}{P_{n}}
$$

or equivalently

$$
A B_{n}=\frac{P_{n+1}}{P_{n}} \cdot B_{n}
$$

which means that B_{n} is an eigenvector for A with corresponding eigenvalue equal to the ratio P_{n+1} / P_{n}.

Typically, the transition matrix A will have three eigenvalues $\alpha_{1}, \alpha_{2}, \alpha_{3}$, and only one of these eigenvalues will be larger than 1 . Say that $\alpha_{1}>1$ and $<-1 \alpha_{2}, \alpha_{3}<1$. We will refer to α_{1} as the dominant eigenvalue. Let's say that the eigenvectors corresponding to $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are U_{1}, U_{2}, U_{3} respectively so that we have $A \cdot U_{1}=\alpha_{1} U_{1}, A \cdot U_{2}=\alpha_{2} V_{2}, A \cdot U_{3}=\alpha_{3} U_{3}$. Further, the initial population vector B_{0} can usually be expressed as a linear combination of the eigenvectors:

$$
B_{0}=c_{1} U_{1}+c_{2} U_{2}+c_{3} U_{3}
$$

It follows that

$$
\begin{gathered}
B_{1}=A \cdot B_{0}=A\left(c_{1} U_{1}+c_{2} U_{2}+c_{3} U_{3}\right)=c_{1}\left(A U_{1}\right)+c_{2}\left(A U_{2}\right)+c_{3}\left(A U_{3}\right) \\
=\left(c_{1} \alpha_{1}\right) U_{1}+\left(c_{2} \alpha_{2}\right) U_{2}+\left(c_{3} \alpha_{3}\right) U_{3} \\
B_{2}=A B_{1}=A\left(c_{1} \alpha_{1} U_{1}+c_{2} \alpha_{2} U_{2}+c_{3} \alpha_{3} U_{3}\right)=c_{1} \alpha_{1}\left(A U_{1}\right)+c_{2} \alpha_{2}\left(A U_{2}\right)+c_{3} \alpha_{3}\left(A U_{3}\right) \\
=c_{1} \alpha_{1}^{2} U_{1}+c_{2} \alpha_{2}^{2} U_{2}+c_{3} \alpha_{3}^{2} U_{3}
\end{gathered}
$$

and in general

$$
B_{n}=c_{1} \alpha_{1}^{n} U_{1}+c_{2} \alpha_{2}^{n} U_{2}+c_{3} \alpha_{3}^{n} U_{3}
$$

Since $-1<\alpha_{2}, \alpha_{3}<1$, their powers α_{2}^{n}, α_{3}^{n} will approach zero when n is very large, therefore the entries in $c_{2} \alpha_{2}^{n} U_{2}+c_{3} \alpha_{3}^{n} U_{3}$ become negligible in the long run, and we can approximate

$$
B_{n} \cong c_{1} \alpha_{1}^{n} U_{1} \quad \text { for } \mathrm{n} \text { sufficiently large }
$$

This means that B_{n} will be an eigenvector for the transition matrix A when n is sufficiently large, and therefore we will have exponential behavior $\left(P_{n+1}=\alpha_{1} P_{n}\right)$ for the total population size and stable distribution vectors from that point on.

