Math 300 Fall 2013 Exam 3

1. Use *Rolle's theorem* to show that $x^3 + 5x - 2 = 0$ does not have more than one real solution.

Rolle's theorem says that if y = f(x) is a differentiable function, and $x_1 < x_2$ are real numbers such that $f(x_1) = f(x_2) = 0$, then there exists a real number z such that $x_1 < z < x_2$ and f'(z) = 0 (f' is the derivative of f)

Answer: Let $f(x) = x^3 + 5x - 2$. Note that f(x) is a differentiable function with $f'(x) = 3x^2 + 5$. Assume by contradiction that the equation f(x) = 0 has two real solutions, x_1, x_2 , with $x_1 < x_2$. By Rolle's theorem, there must exist a real number z ($x_1 < z < x_2$) such that f'(z) = 0. But $f'(z) = 3z^2 + 5 \ge 5 > 0$ cannot be zero, because the square of any real number is ≥ 0 . This is a contradiction.

2. a. Give the definition of the greatest common divisor of two natural numbers.

Answer: Let a, b be two natural numbers. The greatest common divisor of a, b is a natural number d such that d divides a, d divides b, and if c is any natural number such that c divides a and c divides b, then c divides d.

Formally: d|a and d|b and (c|a and $c|b \Rightarrow c|d)$

b. Let a, b be two arbitrary natural numbers, and let d = gcd(a, b). Prove that for every natural number n, gcd(na, nb) = ngcd(a, b).

Let d = gcd(a, b). We need to prove that nd satisfies the three requirements in the definition of gcd for na, nb:

 $\bullet nd|na$

 $\bullet nd|nb$

• if c|na and c|nb, then c|nd.

We know that d|a, so we can write a = kd with k = integer. Then we have na = nkd = k(nd), so nd|na. Similarly, we know that d|b, so we can write b = ld, with l = integer. Then we have nb = nld = l(nd), so nd|nb.

Now we prove the last part: Assume that c is a natural number, and that c|na and c|nb. We know that d = gcd(a, b) is a linear combination of a and b, so we can write d = ax + bywith x, y = integer. Then we also have nd = nax + nby. since c divides na and nb, it follows that c also divides nax and nby, and therefore c divides nax + nby = nd. Since c divides nd, it follows that $c \leq nd$.

3. For each of the following statements, decide if the statement is true or false and give a brief justification.

a. $\mathbf{N} \subseteq \mathbf{Q}$ Answer: true; every natural number is also a rational number b. $[1, 2] = \{1, 2\}$ Answer: false; there are other numbers in [1, 2] other than 1 and 2; for example 1.5.

c. $(2,3) \subseteq (1.5,2.5)$ Answer: false; there are numbers in (2,3) that are not in (1.5,2.5); for example 2.8.

d. $\{x \in \mathbf{R} : x^2 + 2x + 1 = 0\} = \{-1\}$ Answer: True; x = -1 is the only solution of the equation $x^2 + 2x + 1 = 0 \Leftrightarrow (x + 1)^2 = 0$.

e. $\{x \in \mathbf{N} : 1 \le x \le 7\} \subseteq \{x \in \mathbf{N} : x^2 \le 66\}$

Answer: true; for every number $x \le 7$, we have $x^2 \le 49 < 66$

4. (14 pts) Let A, B be two arbitrary sets in a fixed universe U. Prove that $(A \cap B)^c = A^c \cup B^c$. (note: A picture might be helpful but it is not a proof. A proof should start from definitions.)

Answer:

We have $x \in (A \cap B)^c \Leftrightarrow x \notin A \cap B \Leftrightarrow x \notin A$ or $x \notin B \Leftrightarrow x \in A^c$ or $x \in B^c \Leftrightarrow x \in A^c \cup B^c$. **5.** (15 pts) Use the principle of mathematical induction (PMI) to prove that for all natural numbers n we have

$$1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

(the expression on the left hand side is the sum of all the natural numbers from 1 to n).

Answer: (i) check that the statement is true for n = 1:

LHS= 1; RHS= $\frac{1*2}{2} = 1$

(ii) check that $P(n) \Rightarrow P(n+1)$. Assume that P(n) is true, so

$$1 + 2 + \ldots + n = \frac{n(n+1)}{2}$$

To show that P(n+1) is true, we calculate

$$1 + 2 + \ldots + n + (n+1) = \frac{n(n+1)}{2} + n + 1 = \frac{n(n+1) + 2(n+1)}{2} = \frac{(n+1)(n+2)}{2}$$

which is the desired formula.

The next two problems are "proofs to grade." **for full credit:** you need to analyze each statement in the above proof and decide if it is correct or not. Then you need to decide if the "proof" is indeed a proof of the "claim" or not. If the proof is incorrect you need to say precisely what is incorrect about it **and what should be done to correct it.** (for instance if the **claim** is incorrect, then you should give a counterexample; if the proof is incomplete, you should complete it).

6. Claim: Let A, B, C be arbitrary sets. If $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$, then $A \cap C \neq \emptyset$.

"Proof": Assume $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$. Then there exists an element x such that $x \in A \cap B$. By the definition of $A \cap B$, $x \in A \cap B \Rightarrow x \in A$. Similarly, since $B \cap C \neq \emptyset$, there exists an element x such that $x \in B \cap C$. By the definition of $B \cap C$, $x \in B \cap C \Rightarrow x \in C$. Since we have $x \in A$ and $x \in C$, it follows that $x \in A \cap C$, and thus $A \cap C \neq \emptyset$.

Answer: The proof is incorrect because it uses the same name x for two elements that could potentially be different (there is no reason to assume that the element that A and B have in common is the same as the element that B and C have in common).

In order to correct the problem, we give a counterexample to show that the claim is actually false: let $A = \{1, 2, B = \{2, 3\}, C = \{3, 4\}$. Then we have $A \cap B = \{2\} \neq \emptyset, B \cap C = \{3\} \neq \emptyset$, but $A \cap C = \emptyset$.

7. "Proof to grade:"

Claim: For all natural numbers $n \in \mathbf{N}$, $n^3 + 44n$ is divisible by 3.

"**Proof:**" We do a proof by induction. We need to check that conditions (i) and (ii) in the statement of the PMI are satisfied.

(i) If n = 1: $1^3 + 44 * 1 = 45$, which is divisible by 3.

(ii) Let $n \in \mathbf{N}$ be an arbitrary natural number. Assume that the statement is true for n. Then $n^3 + 44n$ is divisible by 3. Therefore $(n+1)^3 + 44(n+1)$ is divisible by 3.

The proof is complete by the PMI (principle of mathematical induction).

Answer: The proof follows the correct outline for a proof by induction. However, the proof is incomplete because there is no proof given for the conclusion "Therefore $(n+1)^3 + 44(n+1)$ is divisible by 3" in part (i).

To correct the problem:

We are assuming that $n^3 + 44n$ is divisible by 3, so we can write $n^3 + 44n = 3k$ for some integer k. Then we have $(n+1)^3 + 44(n+1) = n^3 + 3n^2 + 3n + 1 + 44n + 44 = (n^3 + 44n) + (3n^2 + 3n + 45) = 3k + 3(n^2 + n + 15) = 3(k + n^2 + n + 15)$, which is 3* an integer, and therefore it is divisible by 3.