Math 300 Fall 2013 Exam 3

1. Use Rolle's theorem to show that $x^{3}+5 x-2=0$ does not have more than one real solution.

Rolle's theorem says that if $y=f(x)$ is a differentiable function, and $x_{1}<x_{2}$ are real numbers such that $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, then there exists a real number z such that $x_{1}<z<x_{2}$ and $f^{\prime}(z)=0\left(f^{\prime}\right.$ is the derivative of $\left.f\right)$

Answer: Let $f(x)=x^{3}+5 x-2$. Note that $f(x)$ is a differentiable function with $f^{\prime}(x)=$ $3 x^{2}+5$. Assume by contradiction that the equation $f(x)=0$ has two real solutions, x_{1}, x_{2}, with $x_{1}<x_{2}$. By Rolle's theorem, there must exist a real number $z\left(x_{1}<z<x_{2}\right)$ such that $f^{\prime}(z)=0$. But $f^{\prime}(z)=3 z^{2}+5 \geq 5>0$ cannot be zero, because the square of any real number is ≥ 0. This is a contradiction.
2. a. Give the definition of the greatest common divisor of two natural numbers.

Answer: Let a, b be two natural numbers. The greatest common divisor of a, b is a natural number d such that d divides a, d divides b, and if c is any natural number such that c divides a and c divides b, then c divides d.

Formally: $d \mid a$ and $d \mid b$ and $(c \mid a$ and $c|b \Rightarrow c| d)$
b. Let a, b be two arbitrary natural numbers, and let $d=\operatorname{gcd}(a, b)$. Prove that for every natural number $n, \operatorname{gcd}(n a, n b)=n \operatorname{gcd}(a, b)$.

Let $d=\operatorname{gcd}(a, b)$. We need to prove that $n d$ satisfies the three requirements in the definition of gcd for $n a, n b$:

- $n d \mid n a$
\bullet - $d \mid n b$
- if $c \mid n a$ and $c \mid n b$, then $c \mid n d$.

We know that $d \mid a$, so we can write $a=k d$ with $k=$ integer. Then we have $n a=n k d=$ $k(n d)$, so $n d \mid n a$. Similarly, we know that $d \mid b$, so we can write $b=l d$, with $l=$ integer. Then we have $n b=n l d=l(n d)$, so $n d \mid n b$.

Now we prove the last part: Assume that c is a natural number, and that $c \mid n a$ and $c \mid n b$. We know that $d=\operatorname{gcd}(a, b)$ is a linear combination of a and b, so we can write $d=a x+b y$ with $x, y=$ integer. Then we also have $n d=n a x+n b y$. since c divides $n a$ and $n b$, it follows that c also divides nax and nby, and therefore c divides nax $+n b y=n d$. Since c divides $n d$, it follows that $c \leq n d$.
3. For each of the following statements, decide if the statement is true or false and give a brief justification.
a. $\mathbf{N} \subseteq \mathbf{Q}$ Answer: true; every natural number is also a rational number b. $[1,2]=\{1,2\}$ Answer: false; there are other numbers in $[1,2]$ other than 1 and 2; for example 1.5.
c. $(2,3) \subseteq(1.5,2.5)$ Answer: false; there are numbers in $(2,3)$ that are not in $(1.5,2.5)$; for example 2.8.
d. $\left\{x \in \mathbf{R}: x^{2}+2 x+1=0\right\}=\{-1\} \quad$ Answer: True; $x=-1$ is the only solution of the equation $x^{2}+2 x+1=0 \Leftrightarrow(x+1)^{2}=0$.
e. $\{x \in \mathbf{N}: 1 \leq x \leq 7\} \subseteq\left\{x \in \mathbf{N}: x^{2} \leq 66\right\}$

Answer: true; for every number $x \leq 7$, we have $x^{2} \leq 49<66$
4. (14 pts) Let A, B be two arbitrary sets in a fixed universe U. Prove that $(A \cap B)^{c}=$ $A^{c} \cup B^{c}$. (note: A picture might be helpful but it is not a proof. A proof should start from definitions.)

Answer:

We have $x \in(A \cap B)^{c} \Leftrightarrow x \notin A \cap B \Leftrightarrow x \notin A$ or $x \notin B \Leftrightarrow x \in A^{c}$ or $x \in B^{c} \Leftrightarrow x \in A^{c} \cup B^{c}$.
5. (15 pts) Use the principle of mathematical induction (PMI) to prove that for all natural numbers n we have

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

(the expression on the left hand side is the sum of all the natural numbers from 1 to n).
Answer: (i) check that the statement is true for $n=1$:
$\mathrm{LHS}=1 ; \mathrm{RHS}=\frac{1 * 2}{2}=1$
(ii) check that $P(n) \Rightarrow P(n+1)$. Assume that $P(n)$ is true, so

$$
1+2+\ldots+n=\frac{n(n+1)}{2}
$$

To show that $P(n+1)$ is true, we calculate

$$
1+2+\ldots+n+(n+1)=\frac{n(n+1)}{2}+n+1=\frac{n(n+1)+2(n+1)}{2}=\frac{(n+1)(n+2)}{2}
$$

which is the desired formula.
The next two problems are "proofs to grade." for full credit: you need to analyze each statement in the above proof and decide if it is correct or not. Then you need to decide if the "proof" is indeed a proof of the "claim" or not. If the proof is incorrect you need to say precisely what is incorrect about it and what should be done to correct it. (for instance if the claim is incorrect, then you should give a counterexample; if the proof is incomplete, you should complete it).
6. Claim: Let A, B, C be arbitrary sets. If $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$, then $A \cap C \neq \emptyset$.
"Proof": Assume $A \cap B \neq \emptyset$ and $B \cap C \neq \emptyset$. Then there exists an element x such that $x \in A \cap B$. By the definition of $A \cap B, x \in A \cap B \Rightarrow x \in A$. Similarly, since $B \cap C \neq \emptyset$, there exists an element x such that $x \in B \cap C$. By the definition of $B \cap C, x \in B \cap C \Rightarrow x \in C$. Since we have $x \in A$ and $x \in C$, it follows that $x \in A \cap C$, and thus $A \cap C \neq \emptyset$.

Answer: The proof is incorrect because it uses the same name x for two elements that could potentially be different (there is no reason to assume that the element that A and B have in common is the same as the element that B and C have in common).

In order to correct the problem, we give a counterexample to show that the claim is actually false: let $A=\{1,2, B=\{2,3\}, C=\{3,4\}$. Then we have $A \cap B=\{2\} \neq \emptyset, B \cap C=\{3\} \neq \emptyset$, but $A \cap C=\emptyset$.
7. "Proof to grade:"

Claim: For all natural numbers $n \in \mathbf{N}, n^{3}+44 n$ is divisible by 3 .
"Proof:" We do a proof by induction. We need to check that conditions (i) and (ii) in the statement of the PMI are satisfied.
(i) If $n=1: 1^{3}+44 * 1=45$, which is divisible by 3 .
(ii) Let $n \in \mathbf{N}$ be an arbitrary natural number. Assume that the statement is true for n. Then $n^{3}+44 n$ is divisible by 3 . Therefore $(n+1)^{3}+44(n+1)$ is divisible by 3 .

The proof is complete by the PMI (principle of mathematical induction).
Answer: The proof follows the correct outline for a proof by induction. However, the proof is incomplete because there is no proof given for the conclusion "Therefore $(n+1)^{3}+44(n+1)$ is divisible by $3 "$ in part (i).

To correct the problem:
We are assuming that $n^{3}+44 n$ is divisible by 3 , so we can write $n^{3}+44 n=3 k$ for some integer k. Then we have $(n+1)^{3}+44(n+1)=n^{3}+3 n^{2}+3 n+1+44 n+44=\left(n^{3}+44 n\right)+\left(3 n^{2}+3 n+45\right)=$ $3 k+3\left(n^{2}+n+15\right)=3\left(k+n^{2}+n+15\right)$, which is $3 *$ an integer, and therefore it is divisible by 3 .

