
Math 300 Fall 2013 Exam 3

1. Use Rolle’s theorem to show that x3 + 5x − 2 = 0 does not have more than one real
solution.

Rolle’s theorem says that if y = f(x) is a differentiable function, and x1 < x2 are real
numbers such that f(x1) = f(x2) = 0, then there exists a real number z such that x1 < z < x2

and f ′(z) = 0 (f ′ is the derivative of f)
Answer: Let f(x) = x3 + 5x− 2. Note that f(x) is a differentiable function with f ′(x) =

3x2 + 5. Assume by contradiction that the equation f(x) = 0 has two real solutions, x1, x2,
with x1 < x2. By Rolle’s theorem, there must exist a real number z (x1 < z < x2) such that
f ′(z) = 0. But f ′(z) = 3z2 + 5 ≥ 5 > 0 cannot be zero, because the square of any real number
is ≥ 0. This is a contradiction.

2. a. Give the definition of the greatest common divisor of two natural numbers.
Answer: Let a, b be two natural numbers. The greatest common divisor of a, b is a natural

number d such that d divides a, d divides b, and if c is any natural number such that c divides
a and c divides b, then c divides d.

Formally: d|a and d|b and (c|a and c|b ⇒ c|d)
b. Let a, b be two arbitrary natural numbers, and let d = gcd(a, b). Prove that for every

natural number n, gcd(na, nb) = ngcd(a, b).
Let d = gcd(a, b). We need to prove that nd satisfies the three requirements in the definition

of gcd for na, nb:
•nd|na
•nd|nb
• if c|na and c|nb, then c|nd.
We know that d|a, so we can write a = kd with k = integer. Then we have na = nkd =

k(nd), so nd|na. Similarly, we know that d|b, so we can write b = ld, with l = integer. Then
we have nb = nld = l(nd), so nd|nb.

Now we prove the last part: Assume that c is a natural number, and that c|na and c|nb.
We know that d = gcd(a, b) is a linear combination of a and b, so we can write d = ax + by
with x, y = integer. Then we also have nd = nax + nby. since c divides na and nb, it follows
that c also divides nax and nby, and therefore c divides nax+ nby = nd. Since c divides nd, it
follows that c ≤ nd.

3. For each of the following statements, decide if the statement is true or false and give a
brief justification.

a. N ⊆ Q Answer: true; every natural number is also a rational number b. [1, 2] = {1, 2}
Answer: false; there are other numbers in [1, 2] other than 1 and 2; for example 1.5.

c. (2, 3) ⊆ (1.5, 2.5) Answer: false; there are numbers in (2, 3) that are not in (1.5, 2.5);
for example 2.8.

d. {x ∈ R : x2 + 2x + 1 = 0} = {−1} Answer: True; x = −1 is the only solution of
the equation x2 + 2x+ 1 = 0 ⇔ (x+ 1)2 = 0.

e. {x ∈ N : 1 ≤ x ≤ 7} ⊆ {x ∈ N : x2 ≤ 66}
Answer: true; for every number x ≤ 7, we have x2 ≤ 49 < 66

4. (14 pts) Let A,B be two arbitrary sets in a fixed universe U . Prove that (A ∩ B)c =
Ac ∪ Bc. (note: A picture might be helpful but it is not a proof. A proof should start from
definitions.)
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Answer:

We have x ∈ (A∩B)c ⇔ x /∈ A∩B ⇔ x /∈ A or x /∈ B ⇔ x ∈ Ac or x ∈ Bc ⇔ x ∈ Ac ∪Bc.
5. (15 pts) Use the principle of mathematical induction (PMI) to prove that for all natural

numbers n we have

1 + 2 + . . .+ n =
n(n + 1)

2

(the expression on the left hand side is the sum of all the natural numbers from 1 to n).
Answer: (i) check that the statement is true for n = 1:
LHS= 1; RHS= 1∗2

2
= 1

(ii) check that P (n) ⇒ P (n+ 1). Assume that P (n) is true, so

1 + 2 + . . .+ n =
n(n + 1)

2

To show that P (n+ 1) is true, we calculate

1 + 2 + . . .+ n+ (n + 1) =
n(n+ 1)

2
+ n+ 1 =

n(n + 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2

which is the desired formula.

The next two problems are “proofs to grade.” for full credit: you need to analyze each
statement in the above proof and decide if it is correct or not. Then you need to decide if
the “proof” is indeed a proof of the “claim” or not. If the proof is incorrect you need to say
precisely what is incorrect about it and what should be done to correct it.(for instance if
the claim is incorrect, then you should give a counterexample; if the proof is incomplete, you
should complete it).

6. Claim: Let A,B,C be arbitrary sets. If A ∩ B 6= ∅ and B ∩ C 6= ∅, then A ∩ C 6= ∅.
“Proof”: Assume A ∩ B 6= ∅ and B ∩ C 6= ∅. Then there exists an element x such that

x ∈ A ∩ B. By the definition of A ∩ B, x ∈ A ∩B ⇒ x ∈ A. Similarly, since B ∩ C 6= ∅, there
exists an element x such that x ∈ B ∩ C. By the definition of B ∩ C, x ∈ B ∩ C ⇒ x ∈ C.
Since we have x ∈ A and x ∈ C, it follows that x ∈ A ∩ C, and thus A ∩ C 6= ∅.

Answer: The proof is incorrect because it uses the same name x for two elements that
could potentially be different (there is no reason to assume that the element that A and B have
in common is the same as the element that B and C have in common).

In order to correct the problem, we give a counterexample to show that the claim is actually
false: let A = {1, 2, B = {2, 3}, C = {3, 4}. Then we have A ∩ B = {2} 6= ∅, B ∩ C = {3} 6= ∅,
but A ∩ C = ∅.

7. “Proof to grade:”
Claim: For all natural numbers n ∈ N, n3 + 44n is divisible by 3.
“Proof:” We do a proof by induction. We need to check that conditions (i) and (ii) in the

statement of the PMI are satisfied.
(i) If n = 1: 13 + 44 ∗ 1 = 45, which is divisible by 3.
(ii) Let n ∈ N be an arbitrary natural number. Assume that the statement is true for n.

Then n3 + 44n is divisible by 3. Therefore (n+ 1)3 + 44(n+ 1) is divisible by 3.
The proof is complete by the PMI (principle of mathematical induction).
Answer: The proof follows the correct outline for a proof by induction. However, the proof

is incomplete because there is no proof given for the conclusion “Therefore (n+1)3+44(n+1)
is divisible by 3” in part (i).
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To correct the problem:
We are assuming that n3+44n is divisible by 3, so we can write n3+44n = 3k for some integer

k. Then we have (n+1)3+44(n+1) = n3+3n2+3n+1+44n+44 = (n3+44n)+(3n2+3n+45) =
3k + 3(n2 + n + 15) = 3(k + n2 + n + 15), which is 3∗ an integer, and therefore it is divisible
by 3.
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