Math 300 Fall 2013 Exam 2

1. Consider the statement:"For every integer x there is an integer y such that $x+y$ is an odd integer."
a. Write the above statement symbolically using quantifiers.

Answer: $(\forall x)(\exists y)(x+y$ is odd) (universe $=$ all integers)
b. Give a proof of the statement.

Answer: Let x be an arbitrary integer, and let $y=x+1$. Then $x+y=2 x+1$ is odd, since it has the correct form for an odd integer $(2 k+1$, with $k=x$, an integer $)$.
2. Prove that $\sqrt{2}$ is not a rational number. Give a proof by contradiction.

Answer: Assume by contradiction that $\sqrt{2}$ is a rational number, so we can write $\sqrt{2}=p / q$ with p, q integers. Moreover, we may assume that p and q don't have any common divisors (because if they do have a common divisor we can simplify the fraction and replace p, q by the numerator and denominator of the simplified fraction).

We get $2=p^{2} / q^{2}$, so $2 q^{2}=p^{2}$, which show that p^{2} is an even integer. This implies that p must be an even integer (because otherwise p is odd, so $p=2 k+1 \Rightarrow p^{2}=4 k^{2}+4 k+1$, which would be odd, and this contradicts what we know $-p^{2}$ is even). So we may write $p=2 k$ for some integer k. Then $p^{2}=4 k^{2}$, and plugging this into the previous equation we get $2 q^{2}=4 k^{2} \Rightarrow q^{2}=2 k^{2} \Rightarrow q^{2}$ is even $\Rightarrow q$ is even. So we may write $q=2 l$ for some integer l. But now p, q are both multiplies of 2 , which contradicts our assumption that p, q don't have any common divisors. This is a contradicition.
3. Let x, y, z be integers. Give a proof by contrapositive of the statement:
"If x does not divide $y z$, then x does not divide z."
Answer: The contrapositive is: "If x divides z, then x divides $y z$." Assume that x divides z, so we have $z=x k$ for some integer k. Then $y z=y x k=x(y k)=y l$ where $l=y k$ is an integer, so x divides $y z$.
4. Prove that the line of equation $x+y=2$ and the circle of equation $x^{2}+y^{2}=1$ do not intersect. Give a proof by contradiction.

Answer: Assume by contradiction that the circle and the line have a point in common, say that (a, b) is the point of intersection. Then we have $a+b=2$ and $a^{2}+b^{2}=1$. Plug in $b=2-a$ from the first equation into the second equation. We get $a^{2}+(2-a)^{2}=1$, so $a^{2}+4-4 a+a^{2}=1 \Rightarrow 2 a^{2}-4 a+3=0 \Rightarrow 2\left(a^{2}-2 a+1\right)+1=0 \Rightarrow 2(a-1)^{2}=-1$. This is not possible, because the square of any real number is always ≥ 0.
5. For each of the following statements, decide if the statement is true or false. Then, give a proof (if true) or a counterexample (if false):
a. For all positive real numbers $x, x^{2}-x>0$.

Answer: False. $x=1 / 2$ is a counterexample since $1 / 4-1 / 2=-1 / 2<0$.
b. For every positive real number x, there exists a positive real number y such that $x y-y=1$.
Answer: False. Take $x=1$. Then $x y-y=y-y=0$ no matter what value of y is used, so it cannot be equal to 1 .
c. For every integer t, there exist integers n, m such that $2 n+3 m=t$ (hint: it might help to first consider the case when $t=1$).

Answer: True. Let t be a fixed integer. Take $n=-t$ and $m=t$. Then $2 n+3 m=$ $-2 t+3 t=t$.
6. This is a "proof to grade" question. Consider the statement:
"Claim:" For all real numbers t, if t is irrational then $t+6$ is also irrational.
"Proof": Fix a real number t. Assume that t is rational, so we can write $t=\frac{p}{q}$ with p, q integers, $q \neq 0$. Then $t+6=\frac{p}{q}+6=\frac{p+6 q}{q}$. Since $p+6 q$ is also an integer, it follows that $t+6$ is a rational number.
for full credit: you need to analyze each statement in the above proof and decide if it is correct or not. then you need to decide if the "proof" is indeed a proof of the "claim" or not. If the proof is incorrect you need to say precisely what is incorrect about it and what should be done to correct it.

Answer: The proof is correct, but it is NOT a proof of the "Claim"; it is a proof of $\sim p \Rightarrow \sim q$ (which is equivalent to the converse $q \Rightarrow p$) instead of a proof of $p \Rightarrow q$.
7. This is a "proof to grade" question. Consider the statement:
"Claim:" There do not exist integers n, m such that $n^{2}=4 m+3$.
"Proof:" Assume by contradiction that there exist integers n, m with $n^{2}=4 m+3$. Since n^{2} is odd, we know that n must be odd also (previously known fact). Say that $n=2 k+1$ where k is an integer. Then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4 k(k+1)+1$. It follows that $4 m+3=4 k(k+1)+1$, so $2=4 k(k+1)-4 m$, and therefore 2 is divisible by 4 . This is a contradiction.
for full credit: you need to analyze each statement in the above proof and decide if it is correct or not. then you need to decide if the "proof" is indeed a proof of the "claim" or not. If the proof is incorrect you need to say precisely what is incorrect about it and what should be done to correct it.

Answer: The proof is correct.

