Math 172 Fall 2012 Exam 1

1. (10 pts) Let $P=P(t)$ where $\Delta P=-0.3 P$ and $P(0)=25$. Find $P(1), P(2), P(3)$ and the general formula for $P(t)$. What happens to the values of $P(t)$ in the long run?
2. (20 pts) A population $F(t)$ of fruit-flies depends on time t. The initial population is $F(0)=600$ flies. The population is censused once a week. The intrinsic growth rate is 8% per week. At each census, 12 flies are removed from the population.
a. Write a difference equation that models this process.
b. Rewrite your equation as a recursive equation.
c. Find the size of the population after 4 weeks, and also after 20 weeks.
d. What happens to the size of the population in the long run? Justify your answer.
3. (15 pts) A car is currently worth $\$ 20000$ and its value is decreasing by 15% per year.
a. Write a difference equation (i.e. the equation for a discrete process) for the value of the car t years from now, and find the general solution.
b. How much will the car be worth in 5 years?
c. How long does it take for the value of the car to go down to $\$ 2000$? Show work.
4. (20 pts) The differential equation

$$
\frac{d P}{d t}=0.5 P-8
$$

models a population of fish.
a. Find the equilibrium value and decide whether the equilibrium is stable or not.
b. Assume that the initial population is $P(0)=20$. Use either one of the two methods discussed in class to find the formula for $P(t)$. Show work.
5. (24 pts) Consider a logistic model with equation

$$
\frac{d P}{d t}=0.1 P\left(1-\frac{P}{200}\right)
$$

a. What is the biological meaning of the constants 0.1 and 200 that appear in the equation?
b. Sketch the graph of $P=P(t)$ if $P(0)=20$.
c. Sketch the graph of $P=P(t)$ if $P(0)=300$.
d. Given that $P(0)=100$, use the Euler method with step size $\delta t=3$ to estimate the size of the population at time $t=15$. Show work.
6. (12 pts) a. Write a possible differential equation for a population whose growth is modeled by a logistic equation with Allee effect. Assume that the carrying capacity is 800 individuals and that at least 100 individuals are required in order for the population to survive.
b. A population declines at a rate of 4 individuals per year. Write a difference equation that models this process.
c. A population declines at a rate of 4% per year. Write a difference equation that models this process.
d. A population declines at a rate of 4% per year. Simulataneously, there is immigration of 10 inidividuals per year. Write a difference equation that models this process.

