Answers to WS 2

1. $\Delta P=-0.15 P \quad P(t)=20000(0.85)^{t} \quad P(10)=3935.49$
2. a. $\Delta P=-10 \quad P(t)=2500-10 t$
b. $P(15)=2350$ people
3. $\Delta N=1-\frac{1}{3} N$
b.

$$
\begin{array}{ccccccccc}
t & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
N & 0 & 1 & 1.67 & 2.11 & 2.41 & 2.6 & 2.74 & 2.82
\end{array}
$$

the values are rounded to two decimals.
c. in the long run the amount of drug will stabilize at 3 mg (stable equilibrium)
4. a. $\Delta P=0.085 P \quad P(t)=600(1.085)^{t}$
b. $t_{d b l}=\frac{\ln (2)}{\ln (1.085)}=8.5$ years
c. $t=\frac{\ln (20 / 6)}{\ln (1.085)}=14.76$ years
5. a. $\frac{d P}{d t}=0.085 P \quad P(t)=600 e^{0.085 t}$
b. $t_{d b l}=\frac{\ln (2)}{0.085}=8.15$ years
c. $t=\frac{\ln (20 / 6)}{0.085}=14.16$ years .
6. a. $\Delta P=0.008 P-40$
b. $P(n+1)=1.008 P(n)-40$
c. $P(2)=936, P(10)=668$ (the answers are rounded to the nearest integer). note that four weeks equals two units of time, thus the size of the population after four weeks is equal to $P(2)$ and the size of the population after twenty weeks is $P(10)$.
d. $P_{\text {equil }}=5000$ unstable equilibrium
7. a. $\frac{d P}{d t}=0.02 P-12$ (measure population in millions)
b. $P_{\text {equil }}=600$ million - unstable equilibrium
c. becomes extinct after 20 years (from table of values on calculator)
d. unlimited growth in the long run; will reach 800 million after 35 years (from table of values on calculator)

