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Abstract. We show that the residue field k is a direct summand of the second
syzygy of the canonical module for some almost Gorenstein rings. This implies
that over a Teter ring the only totally reflexive modules are the free ones. We
provide an example of an almost Gorenstein ring which has infinitely many
non-isomorphic totally reflexive modules.

Introduction

Totally reflexive modules are the object of extensive research activity, and yet
it is an open problem to determine conditions that are necessary and sufficient
for the existence of a non-free totally reflexive module, see for example [5]. The
starting point of our investigation was to consider the problem for some artinian
local rings, and in particular for the class of Teter rings, for which we show that
the only totally reflexive modules are the free ones, see Corollary 2.1.

Teter rings are a particular example of almost Gorenstein rings, defined in [10]:

Definition 0.1. An artinian local ring (R, m, k) is almost Gorenstein if the
inclusion 0 :R (0 :R I) ⊆ I :R m holds for every ideal I ⊆ R.

Our investigation led us to the study of the syzygies of the canonical mo-
dule for a certain class of almost Gorenstein rings, for which we prove the following:

Main Theorem. Let (R, m, k) be a local noetherian ring which is almost
Gorenstein with canonical module ωR. Assume that R is not Gorenstein, and
write R = S/J , where S is an artinian Gorenstein ring. Denote by c the dimension
of the k-vector space (J :S m)/(mJ :S m) and assume c > 0. Then the vector space
k

c is a direct summand of the second syzygy of the canonical module ωR.

Issues concerning direct summands of syzygies have played an important role
in criteria for regularity, see [11], and finite G-dimension, see [15]. In particular
the result of [15] implies that for a local ring, the canonical module cannot appear
as a summand of a syzygy module of the residue field unless the ring is regular.

The Main Theorem gives information on the size of the minimal free resolutions
of the canonical module for a certain class of almost Gorenstein rings. A sequence
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{ai}i∈N has exponential growth if there exists an integer A > 1 such that ai ≥ Ai

for all i ≫ 0. Studies on the exponential growth of the sequence of the Betti
numbers of the canonical module can be found for example in [13], [9]. As an
immediate consequence of the above theorem, we obtain a new family of ring for
which the Betti numbers of the canonical module have exponential growth. This
follows immediately from the fact that the Betti numbers of the residue field have
exponential growth if the ring is not a complete intersection, see for example [4].

The paper is organized in the following way. In Section 1 we prove the Main
Theorem and in Section 2 we give some examples of almost Gorenstein rings. The
connection between the Main Theorem and the existance of totally reflexive modules
is given in Section 3 where we also give, in contrast, an example of an almost
Gorenstein ring that admits a totally reflexive modules. In Section 4 we consider
almost Gorenstein rings that are quotients of a polynomial ring by a monomial
ideal, and we show that k is a direct summand of the first or the second syzygy of
the canonical module.

In the following (R, m, k) will denote a local noetherian ring with maximal ideal
m and residue field k.

1. The canonical module over almost Gorenstein rings

In this section we will prove the Main Theorem. Given two ideals of R, I and
J , we will often use the colon ideal I :R J . When I is generated by a single element
I = (f), to abbreviate the notation I :R J will be denoted by f :R J . Similarly,
when J = (f) we will write I :R f instead of I :R (f). We will often use that
0 :R (0 :R I) = I for every ideal I ⊂ R, provided that R is a Gorenstein artinian
ring. For easy reference, we collect two properties of the colon ideal in the following

Lemma 1.1. Let (R, m, k) a noetherian local ring and I1 and I2 two ideals of

R. Then the following hold:

(1) (0 :R I1) :R I2 = (0 :R I1I2) = (0 :R I2) :R I1;

(2) If R is Gorenstein and artinian, then 0 :R (I1 :R I2) = I2(0 :R I1).

Proof. (1) is straightforward. For (2), as the ring R is Gorenstein, it is enough
to show that

0 :R (0 :R (I1 :R I2)) = 0 :R (I2(0 :R I1)).

But 0 :R (I2(0 :R I1)) = (0 :R (0 :R I1)) :R I2 by (1) and applying twice the
assumption that R is Gorenstein, we obtain (0 :R (0 :R I1)) :R I2 = I1 :R I2 = 0 :R
(0 :R (I1 :R I2)). �

For any artinian ring R, one may assume, by the Cohen Structure Theorem,
that R is a quotient S/J where S is a Gorenstein artinian ring. If S is a Gorenstein
ring, then 0 :S (0 :S I) = I for all ideals I in S. Therefore without loss of generality
we may assume that J = 0 :S K for some ideal K ⊆ S. The following result is an
adaptation of Proposition 4.1 in [10].

Lemma 1.2. Let (S, mS) be a Gorenstein artinian local ring and let K be an

ideal minimally generated by f1, . . . , fn such that the ring R = S/(0 :S K) is almost

Gorenstein, but not Gorenstein. Denote by Ki the ideal (f1, . . . , f̂i, . . . , fn), where

the element fi is dropped from the list f1, . . . , fn. Then the equality

mS = fi :S Ki + (Ki(fi :S Ki)) :S fi,
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holds for all i ∈ {1, . . . , n}.
In particular, the equality

mS = fi :S Ki + Ki :S fi,

holds for all i ∈ {1, . . . , n}.

Proof. The last statement follows from the first, as (fi :S Ki)Ki ⊂ Ki ⊂ mS.
Without loss of generality we may assume that i = 1. Let I = (0 :S f1) and

denote by J = (0 :S K). As J ⊆ I and S/J is almost Gorenstein, one has the
inclusion

J :S (J :S I) ⊆ I :S mS .(1.0.1)

We first show that J :S (J :S I) = (0 :S K(f1 : K)). Indeed, the following equalities
hold:

J :S (J :S I) = (0 :S K) :S (J :S I), by definition of J,

= (0 :S K(J :S I)), applying Lemma 1.1 (1),

= (0 :S K((0 :S K) :S I))), by definition of J,

= (0 :S K((0 :S I) :S K)), applying Lemma 1.1(1),

= (0 :S K(f1 :S K)), as I = (0 :S f1) and S is Gorenstein.

On the other hand, the right hand side of inclusion (1.0.1) can be written as

I :S mS = (0 :S f1) :S mS = 0 :S f1m,

where the first equality holds by the definition of I and the second equality holds
by Lemma 1.1(1).

Now inclusion (1.0.1) becomes (0 :S K(f1 :S K)) ⊆ 0 :S f1m and this, together
with the assumption that S is Gorenstein, implies that

f1mS = K(f1 :S K).

In particular, for every element x ∈ mS we can write xf1 =
∑n

i=1 uifi, with ui ∈
(f1 :S K) = (f1 : K1) and hence (x − u1)f1 =

∑n
i=2 uifi. This implies that

(x − u1)f1 ∈ (f1 : K1)K1. Finally x is an element of

((f1 :S K1)K1) :S f1 + f1 :S K1.

As x is an arbitrary element in the maximal ideal m, we have the thesis.
�

Remark 1.3. The conditions in Lemma 1.2 are not sufficient for a ring to
be almost Gorenstein. Take for example S = k[x, y, z, u]/(x2, y2, z2, u2), f1 = xz,
f2 = yz, f3 = xu, f4 = yu so that R = k[|x, y, z, u|]/(x2, y2, z2, u2, xy, zu). For the
ideal I = (u) we obtain 0 :R (0 :R I) = mR but I :R mR = (u, yz, xz), showing that
R is not almost Gorenstein.

On the other hand it is easy to check that Ki :S fi = mS for every i = 1, . . . , 4.

Now we give the proof of the Main Theorem, Theorem 1.4. We will use Ωi
R(M)

to denote the ith syzygy of an R-module M .
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Theorem 1.4. Let (R, mR, k) be a local noetherian ring which is almost Goren-

stein with canonical module ωR. Assume that R is not Gorenstein, and write

R = S/J , where (S, mS , k) is an artinian Gorenstein local ring. Let c = dimk(J :S
mS)/(mSJ :S mS) and assume c > 0. Then the vector space k

c is a direct summand

of the second syzygy of the canonical module ωR.

Proof. In the following, denote by y′ the image in R of an element y ∈ S.
Since S is Gorenstein, we may assume that J = (0 :S K), for some ideal K =
(f1, . . . , fn). The canonical module ωR is given by

HomS(R, S) = HomS(S/(0 :S K), S) ∼= 0 :S (0 :S K) = K,

where equality holds as S is Gorenstein. Let

. . . // Rp
∂2

// Rm
∂1

// Rn
∂0

// K // 0

be a minimal presentation of the canonical module.
By the last statement in Lemma 1.2, we can choose a set of minimal gen-

erators x1, . . . , xe of the maximal ideal mS , such that xi ∈ f1 :S (f2, . . . fn) or
xi ∈ (f2, . . . , fn) :S f1 for every i = 1, . . . , e.

Let u ∈ (J :S mS) \ (mSJ :S mS). There exists an h ∈ {1, . . . , e} such that
xhu /∈ mSJ , and there is a relation a1f1 + a2f2 + · · · + anfn = 0 in S, such that
either a1 = xh or a2 = xh. The column vectors D′ = (a′

1, . . . , a
′
n) is part of a

minimal generating set for the module of first syzygies. After a choice of basis, we
may assume that D′

1 = D′, D′
2, . . . , D

′
m are the columns of ∂1. Let D1, D2, . . . , Dm

denote the liftings of these vectors to Sn, and let D denote the matrix with columns
D1, . . . , Dm.

We claim that the m-tuple u′ ∈ Rm which has u′ in the first entry and zero in
all the other entries is part of a minimal generating set for the module Ω2

R(ωR). To
prove the claim, denote by B′ = (b′ij) the matrix representing ∂2. It is clear by the
choice of u that u′ is in the kernel of ∂1. Assume that u′ is not part of a minimal
set of generators of the second syzygy and denote by u the lift of u′ to Sm where
all the entries are equal to zero except the first entry which is equal to u. This
implies that we can write the u as follow

u = c1







b11

...
bm1






+ · · · + cp







b1p

...
bmp






+ j

where ci are elements of the maximal ideal mS and j ∈ JSm. Moreover we have

b1iD1 + · · · + bmiDm ∈ JSn

for all i = 1, . . . , p. This implies that ∂1u =
∑

cj(b1jD1 + · · · + bmjDm) ∈ mJSn.
On the other hand, either the first component or the second component of Du,
according to whether xh appears in the first component or the second component
of D1, is equal to xhu which by assumption is not in mSJ .

If u1, . . . , uc are elements in (J :S mS) such that their representatives in (J :S
mS)/(mSJ :S mS) are a basis, one can then construct vectors u′

i ∈ Rm using the
same procedure as above, and the same argument shows that they are part of a
minimal system of generators of Ω2

R(ωR). The R-module spanned by these vectors
is isomorphic to k

c, and it is a direct summand of Ω2
R(ωR).

�
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Before closing the section, we record a remark which gives a condition equivalent
to the hypothesis in the Main Theorem; it will be used in the later sections.

Remark 1.5. Assume R = S/J it is the quotient of an artinian Gorenstein
ring S, and we write J = 0 :S K, for some ideal K ⊂ S, then we have

mSJ :S mS 6= J :S mS ⇔ mSK :S mS 6= K :S mS .

Indeed, one has J :S mS = mSJ :S mS if and only if

(0 :S K) : mS = mS(0 :S K) :S mS,

or equivalently, as S is Gorenstein, if and only if

0 :S ((0 :S K) :S mS) = 0 :S (mS(0 :S K) :S mS).(1.0.2)

The first term of the equality (1.0.2) is equal to 0 :S (0 :S mSK) by (1.1)(1)
applied to K and mS , and hence it is equal to mSK as S is Gorenstein.

For the second term in the equality (1.0.2) the following equalities hold:

0 :S (mS(0 :S K) :S mS) = mS[0 :S mS(0 :S K)], by Lemma 1.1(2),
= mS((0 :S (0 :S K)) :S mS), by Lemma 1.1(1),

= mS(K :S mS) as S is Gorenstein.

In particular (1.0.2) holds if and only if mS(K :S mS) = mSK or, equivalently, if
and only if K :S mS = mSK :S mS .

2. Examples of Almost Gorenstein Rings

Remark 2.1. A ring R is called Teter if R = S/(δ) where S is a Gorenstein
artinian ring with socle element generated by δ. By Theorem 2.1 and Proposition
1.1 of [10] a Teter ring is an almost Gorenstein ring.

In [10], the authors prove that quotiens of Cohen-Macaulay rings of finite
Cohen-Macaulay type via a special system of parameters are almost Gorenstein.
We adapt their proof to show the following

Proposition 2.2. Let (R, m, k) be a Cohen-Macaulay ring such that
m Ext1R(M, R) = 0 for all maximal Cohen-Macaulay module M . Then R/(xxx) is
an almost Gorenstein ring for all systems of parameters xxx.

Proof. Let I be any ideal of R containing the ideal generated by xxx. We need
to show that (xxx) :R ((xxx) :R I) ⊆ I :R m. Assume that I is generated by f1, . . . , fn

and consider the short exact sequence

0 →
R

(xxx) : I
→

(

R

(xxx)

)n

→ N → 0,

where the first map is given by u → (f1u, . . . , fnu). Applying the functor
HomR( , R/(xxx)) to the short exact sequence we obtain:

0 → HomR(N,
R

(xxx)
) → HomR(

R

I
,

R

(xxx)
)n → HomR(

R

(xxx) : I
,

R

(xxx)
) → Ext1R(N,

R

(xxx)
).

The cokernel of the middle map is the cokernel of:

⊕
(xxx) :R I

(xxx)
→

(xxx) :R ((xxx) :R I)

(xxx)
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given by (u1, . . . , un) → f1u1 + · · · + fnun. The cokernel is therefore isomorphic

to (xxx):R((xxx):RI)
I

and embeds in Ext1R(N, R/(xxx)). As (xxx) ⊆ annR Ext1R(N, R
(xxx)), we

obtain the isomorphism Ext1R(N, R/(xxx)) ∼= Extd+1
R (N, R) which is isomorphic to

Ext1R(Ωd(N), R) and therefore annihilated by m. This implies that m
(xxx):R((xxx):RI)

I
=

0 and therefore the thesis. �

3. Almost Gorenstein rings and totally reflexive modules

We begin with the definition of totally reflexive modules.

Definition 3.1. An R-module M is totally reflexive if and only if M∗∗ ∼= M
and Exti

R(M, R) = 0 = Exti
R(M∗, R), for all i > 0.

The following lemma is well-known by the experts. We include the proof for
easy reference.

Lemma 3.2. Let (R, m, k) be a local ring with canonical module ωR. If k is

a direct summand of any syzygy of ωR then there are no non-free totally reflexive

modules.

Proof. Let X be a totally reflexive module. By definition, ExtiR(X, F ) = 0
for every free module F and for every i > 0. Applying the functor HomR(X, )
to the short exact sequence 0 → Ω1

R(ωR) → F → ωR → 0, one obtains the equal-

ities Ext1R(X, ωR) = Exti+1
R (X, Ωi

R(ωR)) for every R-module M . In particular,

Exti+1
R (X, k) = 0 if k is a direct summand of Ωi

R(ωR). This shows that X has fi-
nite projective dimension and therefore it is free, by the Auslander-Bridger formula
(see for example Theorem 1.4.8 [7]) and the Auslander-Buchsbaum formula (see for
example Theorem 1.3.3 [6]). �

Remark 3.3. In [12] Theorem 1.6 and Remark 1.8 (e) it is shown that if a
local ring R can be written as a quotient S/J , where (S, mS) is a local ring such
that dimk(J :S mS)/(mSJ :S mS) ≥ 2 then there are no non-free totally reflexive
modules. The Main Theorem and Lemma 3.2 show that for almost Gorenstein rings
the conclusion holds even in the case when dimk(J :S mS)/(mSJ :S mS) ≥ 1.

Corollary 3.4. Let R be a Teter ring, then R does not admit totally reflexive
modules which are not free.

Proof. let S be an artinian Gorenstein ring such that R = S/(δ), where δ
generates the socle of S. As δ :S mS strictly contains mSδ :S mS = 0 :S mS , by
Remark 2.1 the conditions of the Main Theorem are satisfied and therefore the
corollary follows from Lemma 3.2. �

Teter rings are the ring of smallest Gorenstein colength, for a definition see [1].
The following example shows that it is possible to have totally reflexive modules
over rings of Gorenstein colength 2.

Example 3.5. The ring R = k[|x, y, z|]/(x2, y2, z2, yz) has totally reflexive
modules which are not free. On the other hand, let S = k[|x, y, z|]/(x2, y2, z2) and
J = (yz)S then J :S mS = (mSJ :S mS). The ring R has Gorenstein colength 2.

We conclude the section with an example of an almost Gorenstein ring that
admits a totally reflexive module, and therefore infinitely many by [8]. For the
argument we use some facts which we collect in the following three remarks.
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Remark 3.6. In [3], Theorem 3.1, the authors prove that if (R, m) is a local
ring and yyy = y1, . . . , yd is a regular sequence in m

2 then R/(yyy) has a totally reflexive
module.

Remark 3.7. Let (R, m) be a local ring. Let M be a finitely generated R-
module and 0 → Ω1

R(M) → F → M → 0 be the beginning of a minimal free
resolution of M . For every element x of the maximal ideal, denote by µx the
multiplication by x. If for every x in a minimal set of generators of m there exists
a linear map φx such that the diagram:

0 // Ω1
R(M)

µx

��

// F //

φx
||y
y
y
y
y
y
y
y
y

M // 0

0 // Ω1
R(M) // F // M // 0

commutes, then m Ext1R(M, N) = 0 for all modules N .

Remark 3.8. Let (R, m) be a local Cohen-Macaulay ring with canonical mo-
dule ωR. For every R-module N , denote by N∨ the R-module HomR(N, ωR). Let
M and L be two maximal Cohen-Macaulay modules. There exists an isomorphism
φ : Ext1R(M, L) → Ext1R(L∨, M∨) such that φ(ξ1) = ξ2 where

ξ1 : 0 → L → X → M → 0

and
ξ2 : 0 → M∨ → X∨ → L∨ → 0

is obtained by applying HomR( , ωR) to ξ1.

Example 3.9. The ring R = C[[x, y, z, u, v]]/(xz − y2, xv − yu, yv − zu) is of
finite Cohen Macaulay type and its only indecomposable maximal Cohen-Macaulay
modules are R, the ideals ωR

∼= α = (x, y), α2 = (x2, y2, xy), β = (x, y, u) and the
R-module Ω1

R(β). For a proof of this see for example [14]. In the following we

show that the maximal ideal m annihilates all the R-modules Ext1R(M, R) for M
maximal Cohen-Macaulay.

For the ideal α, the first syzygy Ω1
R(α) is generated by

[−v, u], [−z, y], [−y, x].

The following list gives the maps of Remark 3.7

φx =

(

y z − y
−x −y + x

)

φy =

(

−y 0
x 0

)

φz =

(

z 0
−y 0

)

φv =

(

v − y −z
−u + x y

)

φu =

(

y 0
−u 0

)

In particular, by Remark 3.7, we have that m Ext1R(α, N) = 0 for every R-module
N .

For every maximal Cohen-Macaulay module M , the following holds:

annR(Ext1R(M, R)) = annR(Ext1R(ωR, M∨) = annR(Ext1R(α, M∨)) = m,

where the second equality follows from Remark 3.8. Now the sequence x2, v2, z2+u2

is a system of parameters of R contained in m
2. Therefore R/(x2, v2, z2 + u2) is

almost Gorenstein by Lemma 2.2 and has a totally reflexive module by Remark 3.6.
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4. The monomial case

The main result of this section deals with artinian almost Gorenstein rings
which are obtained as quotients of polynomial rings by monomial ideals.

Theorem 4.1. Let S = k[x1, . . . , xd]/(xA1

1 , . . . , xAd

d ), and let f1, . . . , fn be

monomials in S such that R = S/0 :S (f1, . . . , fn) is almost Gorenstein. Then

the residue field is a direct summand of the first or second syzygy of the canonical

module ωR .

The proof of Theorem 4.1 will be given after we prove the following:

Theorem 4.2. Let S = k[x1, . . . , xd]/(xA1

1 , . . . , xAd

d ), and let f1, . . . , fn be

monomials in S such that

(1) fi does not divide fj for every i 6= j;
(2) xi divides fj for all i ∈ {1, . . . , d} and for all j ∈ {1, . . . n};
(3) (x1, . . . , xu) ⊆

∑n
i=1 fi :S (f1, . . . , fn).

Then, one of the following conclusions holds:

(A) There exists an i ∈ {1, . . . , n} and a j ∈ {1, . . . , u} such that

fi

xj

∈ (f1, . . . , fn) :S (x1, . . . , xu);

(B) There exist mutually disjoint sets S1, . . . , Sn ⊆ {1, . . . , u} such that for all

i ∈ {1, . . . , n} and all j ∈ {1, . . . , u}, xjfi 6= 0 ⇔ j ∈ Si.

Proof. Before we proceed with the proof, we establish some claims that we

will use later. Write each fj = Πn
i=1x

Nji

i , with Nji < Ai.

Claim 1: If xifj ∈ (fk), for some integers i, j, k then one of the following cases hold:

(i)

{

Nji = Nki − 1

Njl ≥ Nkl, for every l 6= i

(ii) Nji = Ai − 1

Moreover, for fixed j, k, the first case can hold for at most one i.
Proof of Claim 1: Note that (ii) is equivalent to xifj = 0 in S. If 0 6= xifj ∈ (fk),
then (i) is obtained by comparing the exponents of each variable for xifj and fk.
The fact that Nji = Nki − 1 is due to the assumption that fk does not divide fj.
For the last statement, assume that there are two indeces i1 and i2 such that

{

Nji1 = Nki1 − 1

Njl ≥ Nkl, for every l 6= i1

and
{

Nji2 = Nki2 − 1

Njl ≥ Nkl, for every l 6= i2

then, Nki2 − 1 = Nji2 ≥ Nki2 which is a contradiction.

Claim 2: If conclusion B holds but A does not hold, then we have the following:

(i) each set Si has cardinality at least 2;
(ii) for every k ∈ Si we have xk ∈ (fi) :S (f1, . . . , fn), and xk /∈ fj :S

(f1, . . . , fn) for all j 6= i.
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Proof of Claim 2: Assume that there exist indeces i and k such that Si = {xk}.
Since xkfj = 0 for all j 6= i, it follows that case (A) holds, as

fi

xk

∈ fi :S (f1, . . . , fn).

For (ii), let k ∈ Si. Assume that xk ∈ fj :S (f1, . . . , fn) for some j 6= i. Then
0 6= xkfi ∈ (fj). As we may assume (i), there exists an l ∈ Si such that l 6= k. By
Claim 1, we have Nil ≥ Njl. As l /∈ Sj , we have xlfj = 0, and thus Njl = Al − 1.
This contradicts the fact that Nil < Al − 1.

The proof of the theorem goes by induction on the number of variables d, the
case d = 1 being obvious. Assume that the theorem holds for d − 1 variables. We
now induct on the number n of polynomials. Assume that the theorem holds in the
case of n − 1 polynomials.

Claim 3: If there exists k ∈ {1, . . . , u} such that xkfi = 0 for all i ∈ {1, . . . , n},
then we are done by induction on the number of variables. In particular, whenever
conclusion B holds for a subset of {f1, . . . , fn} with respect to a subset {x1, . . . , xs}
of {x1, . . . , xu}, we may assume that the sets S1, S2, . . . , asserted in Conclusion B
form a partition of {1, . . . , s}.

Indeed, we can write fi = xAk−1
k f ′

i , with f ′
i ∈ k[x1, . . . , x̂k, . . . , xd]. Assump-

tions (1), (2), (3) hold for {f ′
1, . . . , f

′
n} viewed as monomials in d − 1 variables. If

conclusion (A) holds for {f ′
1, . . . , f

′
n}, then it also holds for {f1, . . . , fn}. Similarly,

if conclusion (B) holds for {f ′
1, . . . , f

′
n}, then it also holds for {f1, . . . , fn} (with the

same choice of the sets Si).

Claim 4: Assume that conclusion B holds for {f1, . . . , fn−1} with respect to a set
of variables {x1, . . . , xs}, with s ≤ u. Let S′

1, . . . , S
′
n−1 ⊂ {1, . . . , s} be the sets

asserted in conclusion B. Let k ∈ {1, . . . , s}, and let i ∈ {1, . . . , n− 1} be such that
k ∈ S′

i.
Then we have either xk ∈ fi :S (f1, . . . , fn), or xk ∈ fn :S (f1, . . . , fn). Among

the k’s for which the first situation occurs, we can have xkfn 6= 0 for at most one
such k.
Proof of Claim 4: By Claim 2 (ii), we cannot have xk ∈ fj :S (f1, . . . , fn−1)
for any i 6= j 6 n − 1. Thus, we have either xk ∈ fi :S (f1, . . . , fn), or xk ∈
fn :S (f1, . . . , fn). For the last part of the claim, assume that xk1

fn ∈ (fi1), and
xk2

fn ∈ (fi2), with k1 ∈ S′
i1

, and k2 ∈ S′
i2

. We need to show that one of xk1
fn

or xk2
fn is zero. If i1 = i2, this follows from Claim 1. Assume that i1 6= i2 and

xk1
fn 6= 0. Then Nnk1

= Ni1k1
− 1, Nnl > Ni1l for all l 6= k1. In particular,

Nnk2
> Ni1k2

. Since k2 /∈ S′
i1

, we have xk2
fi1 = 0, and thus xk2

fn = 0.

Claim 5: If

(x1, . . . , xu) ⊆
∑

l 6=i

fl :S (f1, . . . , fn).

for some i ∈ {1, . . . , n}, then conclusion A holds.

Proof of Claim 5: Assume that (x1, . . . , xu) ⊆
∑n−1

i=1 fi :S (f1, . . . , fn). The as-
sumptions (1),(2),and (3) in the theorem are satisfied for {f1, . . . , fn−1} with re-
spect to the variables {x1, . . . , xu}, and by the induction hypothesis either A of B
holds. If (A) holds for {f1, . . . , fn−1} then it also holds for {f1, . . . , fn}, and we are
done.

Assume that (B) holds for {f1, . . . , fn−1}. Let {1, . . . , u} = S′
1 ∪ . . . ∪ S′

n−1 be
the partition asserted in conclusion (B). By Claim 4, for each k ∈ {1, . . . , u} we
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have either xk ∈ fi :S fn or xk ∈ fn :S fi, where i ∈ {1, . . . , n − 1} is such that
k ∈ S′

i.
If the first situation occurs for all k ∈ {1, . . . , u}, then Claim 3 shows that

xkfn = 0 for all values of k except one, say k0. Then conclusion A holds, with

fn

xk0

∈ (f1, . . . , fn) :S (x1, . . . , xu).

Assume that there exists a k0 such that xk0
fi0 ∈ (fn) holds, where i0 is such

that k0 ∈ S′
i0

. Note that xk0
fi0 6= 0, so we have Ni0l > Nnl for all l 6= k0. By Claim

2(i), we may assume that S′
i0

has cardinality at least two. Let k′ ∈ Si0 , k′ 6= k.
Since Nnk′ 6 Ni0k′ < Ak′ − 1, it follows that xk′fn 6= 0 for all k0 6= k′ ∈ S′

i0
.

Also, by Claim 1, we cannot have xk′fi0 ∈ (fn). The only remaining possibility
is that 0 6= xk′fn ∈ (fi0), and therefore Nnl > Ni0l for all l 6= k′. In particular,
xjfn = 0 for all j /∈ S′

i0
. It follows that conclusion A holds, with

fn

xk0

∈ (f1, . . . , fn) :S (x1, . . . , xu).

Indeed, for k′ ∈ Si0 , k′ 6= k0 we have xk′fn ∈ (fi0), and Nnk0
= Ni0k0

+ 1, from
which we see that

fn

xk0

xk′ ∈ (fi0).

Claim 5 allows us to rename the variables so that we may assume that

x1, . . . , xs /∈ fn :S (f1, . . . , fn−1, fn)(4.0.1)

xs+1, . . . , xu ∈ fn :S (f1, . . . , fn−1, fn)(4.0.2)

We apply the induction hypothesis to {f1, . . . , fn−1} with respect to the variables
{x1, . . . , xs}.

Assume that conclusion B holds for {f1, . . . , fn−1} with respect to {x1, . . . , xs},
but A does not. Let {1, . . . , s} = S′

1 ∪ . . . ∪ S′
n−1 be the partition asserted by B.

We claim that

xlf1 = . . . xlfn−1 = 0, for all s + 1 ≤ l ≤ u.(4.0.3)

Indeed, assume by way of contradiction that there exists an l ∈ {s + 1, . . . , u} and
an i 6 n−1 such that xlfi 6= 0. Since xlfi ∈ (fn), we must have Nik > Nnk ∀k 6= l.
In particular, for k ∈ S′

i, we have Nik < Ak − 1, and thus Nnk < Ak − 1, which
means that xkfn 6= 0. Since we may assume that S′

i has cardinality at least two,
Claim 4 shows that there exists a k ∈ S′

i with xkfi ∈ (fn). The fact that both xjfi

and xkfi are nonzero elements in (fn) contradicts Claim 1.
Equation 4.0.1 and Claim 4 show that we have two possibilities:
(1) There exists a k ∈ {1, . . . , s} with 0 6= xkfn ∈ (fi), where k ∈ S′

i, and
xlfn = 0 for all l ∈ {1, . . . , s}, l 6= k. Then we also have xlfn = 0 for all l ∈
{s + 1, . . . , u}, because Nnl > Nil, and Equation 4.0.3 shows that Nil = Al − 1. It
follows that conclusion A holds, as

fn

xk

∈ (f1, . . . , fn) : (x1, . . . , xu).

(2) xkfn = 0 for all k ∈ {1, , . . . , s}. If xlfn 6= 0 for all l ∈ {s + 1, . . . , u}, then
conclusion B holds for {f1, . . . , fn}, {x1, . . . , xu}, with Si = S′

i for i 6 n − 1, and
Sn = {s + 1, . . . , u}. Otherwise, assume that xlfn = 0 for some l ∈ {s + 1, . . . , u}.
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Use Equation 4.0.3 to see that xlfi = 0 for all i ∈ {1, . . . , n}, and thus we are done
by induction on the number of variables, by Claim 3.

Now assume that conclusion A holds for {f1, . . . , fn−1} with respect to the
variables {x1, . . . xs}. Without loss of generality, we may assume that

(4.0.4)
f1

x1
∈ (f1, f2, . . . fn−1) :S (x1, . . . , xs).

If

xl

f1

x1
∈ (fn), for every s + 1 ≤ l ≤ u,(4.0.5)

then conclusion A would hold for {f1, . . . , fn}, {x1, . . . , xu}, and we would be done.
We know that xlf1 ∈ (fn) for all s+1 ≤ l ≤ u by equation 4.0.2. If xlf1 = 0 for all
s+1 ≤ l ≤ u, or if N11 > Nn1 then equation 4.0.5 holds. Without loss of generality
we may assume that

N11 ≤ Nn1(4.0.6)

and xlf1 6= 0 for some s + 1 ≤ l ≤ u. By Claim 1, there exists just one value of l,
say l = s + 1 such that xlf1 6= 0 (since we have xlf1 ∈ (fn) for all l > s + 1). So we
may assume

(4.0.7) xs+1f1 6= 0, N11 = Nn1 and xlf1 = 0, for all s + 2 ≤ l ≤ u

Claim 6: With the above assumptions, the following holds:

x2f1 = . . . xsf1 = 0(4.0.8)

If, say, x2f1 6= 0, then

0 6= x2
f1

x1
∈ (fi)

for some i ≤ n − 1, which implies that N11 > Ni1 and N1s+1 > Nis+1. As, by
equation 4.0.2, xs+1fi ∈ (fn) then we obtain the following two possibilities:

(1) either xs+1fi = 0, which implies xs+1f1 = 0, contradicting 4.0.7; or
(2) Ni1 ≥ Nn1, which implies N11 > Nn1, contradicting 4.0.6.

This proves Claim 6.
Because of Claim 5, we may assume that there exists an index j, such that

1 ≤ j ≤ s and

xj ∈ f1 :S (f2, . . . , fn)(4.0.9)

We may assume that

x1f1 6= 0, and therefore x1fn 6= 0(sinceN11 = Nn1).(4.0.10)

Otherwise, by 4.0.7 and 4.0.8, xlf1 = 0 for all l ∈ {1, . . . , s, s + 2, . . . , u}, and it
follows that condition A holds:

f1

xs+1
∈ (f1, . . . , fn) : (x1, . . . , xu).

The following cases finish the proof of the theorem.

(1) Assume j = 1. Since x1fn ∈ (f1) and N11 = Nn1, by 4.0.7, then x1fn = 0
contradicting 4.0.10.

(2) Assume j ≥ 2. We may assume j = 2. By 4.0.7 and 4.0.8 we have xlf1 = 0
for all l 6= 1, s + 1. We may assume that x1f1 6= 0, by 4.0.10.
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(a) Assume that x2fn 6= 0. We know x1 ∈ fi :S (f1, . . . , fn) for some
i ∈ {1, . . . , n− 1}. As 0 6= x2fn ∈ (f1) and x1fn 6= 0, by Claim (1) it
follows that 2 ≤ i ≤ n− 1 (because N12 > Nn2 > Ni2, so i 6= 1). For
such an i, we claim that

fi

x1
∈ (f1, . . . , fn) : (x1, . . . , xu).(4.0.11)

First notice that Ni1 = Nn1 + 1 = N11 + 1, since 0 6= x1fn ∈ (fi)
and by 4.0.6. Moreover, as x2fn 6= 0, by multiplying x1fn by x2 we
obtain that 0 6= x2fi ∈ (f1) (we have x2fi ∈ (f1) by equation 4.0.9,

and we have x2fi 6= 0 because Ni2 6 Nn2). Moreover,
x2fi

x1
∈ (f1),

since Ni1 > N11). If xlfi 6= 0 for some l /∈ {1, 2, s+1}, then xlf1 6= 0,
contradicting 4.0.6 and 4.0.7. As xs+1 ∈ (fn) : (f1, . . . , fn), we obtain

xs+1fi ∈ (fn) and since Ni1 = Nn1 + 1 also xs+1
fi

x1

∈ (fn).

(b) Assume that x2fn = 0. If x2fi = 0, for all i ∈ {1, . . . , u} then we are
done by Claim 3. So we may assume that there is a t /∈ {1, n} such
that x2ft 6= 0 and x2ft ∈ (f1). Therefore N12 = Nt2 + 1. As xlft ∈
(fn) for every s + 1 ≤ l ≤ u, if xlft 6= 0 then A2 − 1 = Nn2 ≤ Nt2

which contradicts x2ft 6= 0. Therefore we have that xlft = 0 for all
s + 1 ≤ t ≤ u. Also, as 0 6= x2ft ∈ (f1), we have Ntk ≥ N1k for all
k 6= 2. As xlf1 = 0 for all l
notin{1, s + 1}, it follows that xlft = 0 for all l /∈ {1, 2}. If also
x1ft = 0 then conclusion A holds as

ft

x2
∈ (f1, . . . , fn) :S (x1, . . . , xu).

Assume that x1ft 6= 0. Recall that x1 ∈ fi :S (f1, . . . , fn) for some
i 6 n − 1. We claim that

fi

x1
∈ (f1, . . . , fn) :S (x1, . . . , xu).

As 0 6= x1ft ∈ (fi), we have Nil ≤ Ntl for all l 6= 1. As x2ft 6= 0 this
implies that x2fi 6= 0. As x2fi ∈ (f1) by equation 4.0.9, and since
xlf1 = 0 for l /∈ {1, s+1}, we obtain that xlfi = 0 for l /∈ {1, 2, s+1}.

To prove the claim, it is therefore enough to prove that fi

x1

x2 ∈ (f1)

and fi

x1

xs+1 ∈ (fn). As 0 6= x1f1 ∈ (fi) we obtain Ni1 = N11 + 1 =
Nn1 + 1, where the last equality follows from 4.0.7. This, together
with the fact that x2fi ∈ (f1) by equation 4.0.9, and xs+1fi ∈ (fn)
by equation 4.0.2 concludes the claim.

�

Now we give the proof of Theorem 4.1

Proof. We may apply Theorem 4.2 to {f1, . . . , fn}, {x1, . . . , xd}.
Indeed, the assumption that R = S/0 :S (f1, . . . , fn) is almost Gorenstein

implies hypothesis (3) of Theorem 4.2 by Lemma 4.3 . We may assume without loss
of generality that (1) holds by choosing f1, . . . , fn to be a minimal set of generators
for the ideal they generate. In order to establish hypothesis (2), note that R does
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not change if we replace S by S′ = k[x1, . . . , xd]/(xA1+1
1 , . . . , xAd+1

d ), and f1, . . . , fn

by f ′
1, . . . , f

′
n, where f ′

i = (x1 · · ·xd)fi.
If (A) holds, then we may apply Theorem 1.4 to conclude that a copy of the

residue field k splits off the second syzygy of ωR. Take K = (f1, . . . , fn) ⊂ S. From
conclusion (A) of Theorem 4.2, we have

fi

xj

∈ (K :S mS) \ (mSK :S mS)

which, by Remark 1.5, implies J :S mS 6= mSJ :S mS , where J = 0 :S K, and now
Theorem 1.4 applies.

If (B) holds, we will check that k is a direct summand of the first syzygy of ωR.
Let S1, . . . , Sn be the sets asserted in Conclusion (B). We have

(xA1

1 , . . . , xAd

d ) :S (f1, . . . , fn) = (xA1

1 , . . . , xAd

d ) + (xjxj′ | j, j
′ not in the same Si).

The relations on the generators f1, . . . , fn of ωR are xjfi = 0 for j /∈ Si, and

(Πj∈Si
x

Aj−1
j )fi − (Πj∈Si′

x
Aj−1
j )fi′ = 0. Note that the latter relations are killed by

the maximal ideal, thus each of them generates a copy of k which splits off the first
syzygy.

�

Lemma 4.3. Let S = k[x1, . . . , xd]/(xA1

1 , . . . , xAd

d ) and let f1, . . . , fn ∈ S be

monomials such that S/0 :S (f1, . . . , fn) is almost Gorenstein. Then we have

(x1, . . . , xd) ⊆ Σifi :S (f1, . . . , fn).

Proof. We will use Nik to denote the exponent of the variable xk in the
monomial fi.

By Lemma 1.2, the almost Gorenstein assumption implies

xi ∈ f1 :S (f2, . . . , fn) + [f1 :S (f2, . . . , fn)][(f2, . . . , fn)] :S f1

for all i = 1, . . . , d.
Without loss of generality, we will show that x1 ∈ fj :S (f1, . . . , fn) for some

j ∈ {1, . . . , n}.
If x1fi = 0 for all i = 1, . . . n then the conclusion follows. So there exist a j

such that x1fj 6= 0. Denote by S the set of indexes j such that x1fj 6= 0. There
are two cases: either xkfj = 0 for all k 6= 1 and for all j ∈ S or there exists a k 6= 1
such that xkfj 6= 0 for some j ∈ S,

In the first case we have that f1 = xN11
1 xA2−1

2 . . . xAd−1
d

Assume that for a such that x1fj 6= 0 one has xkfj = 0 for all k 6= 1.
Choose a j (say j = 1) such that x1fj 6= 0, and xkfj 6= 0 for some k 6= 1. If no

such j exists, it is easy to see that x1 ∈ f1 :S (f2, . . . , fn) (where we assume that
x1f1 6= 0 and x2f1 = . . . = xdf1 = 0).

Assume x1 /∈ f1 :S (f2, . . . , fn). Then there exists a j ∈ {2, . . . , n}, say j = 2,
such that x1f1 = a2f2 for some a2 ∈ f1 :S (f2, . . . , fn).

Assume that x2f1 6= 0.
We know that x2f1 /∈ (f2) by comparing the exponents of x1 (N1k > N2k for

k 6= 1, and N11 = N21 − 1). So x2 /∈ f2 :S (f1, . . . , fn), thus there exists a j such
that x2f2 = ajfj with aj ∈ f2 :S (f1, . . . , fn). Note that j 6= 1, since x2f2 /∈ (f1)
(by comparing the exponents of xj , j > 2 -if there are more than 2 variables).

We may assume j = 3. We will use aik to denote the exponent of the variable xk

in the monomial ai. We have a2 ∈ f1 :S (f2, . . . , fn), so in particular a2f3 ∈ (f1).
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This means that either a2f3 = 0, or, by comparing exponents in each variable,
a2k + N3k > N1k for all k.

We claim that a2f3 cannot equal zero in S. If a2f3 = 0, we must have a2k +
N3k > Ak for some k. Since a2k = N1k − N2k for all k 6= 1, and since N2k > N3k

for k 6= 2, we see that a2k + N3k 6 N1k 6 Ak for all k 6= 1, 2. For k = 1, we
have a21 = 0, so a21 + N31 = N31 < A1. For k = 2, we have N22 = N32 − 1, so
a22 + N32 = N12 − N32 + 1 + N32 = N12 + 1, which is less that A2 since we are
assuming x2f1 6= 0. This concludes the proof of the claim.

Now we have a2k + N3k > N1k for all k.
For k 6= 1, this means N1k − N2k + N3k > N1k, thus N3k > N2k. Since we

already knew the inequality in the other direction, it follows that N3k = N2k for
k 6= 1, 2. Thus, we have a3k = 0 for k 6= 1, 2, and we also know that A32 = 0,
a31 + N21 − N31, where N21 = N11 + 1 and N31 > N11, so that a31 can be at
most one. It follows that a3 = x1, and by our assumption on a3 we now have
x1 ∈ f2 :S (f1, . . . , fn) as desired. �
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Dubreil et Marie-Paule Malliavin, 37ème année (Paris, 1985), Lecture Notes in Math., vol.
1220, Springer, Berlin, 1986, pp. 25–32. MR 926295 (89c:14003)

15. Takahashi, Ryo, Syzygy modules with semidualizing or G-projective summands, J. Algebra,
295, (2006), no. 1, 179–194. MR 2188856 (2006j:13010)



SOME HOMOLOGICAL PROPERTIES OF ALMOST GORENSTEIN RINGS 15

Department of Mathematics and Computer Science, Fairfield University, Fairfield,

CT 06824.

E-mail address: jstriuli@fairfield.edu

Department of Mathematics, University of South Carolina, Columbia, SC 29208.

E-mail address: vraciu@math.sc.edu


