Algebraic number theory (Spring 2013), Homework 6

Frank Thorne, thorne@math.sc.edu

Due Friday, April 19

Recall that starred (*) exercises may involve background beyond what is assumed in this course.

- 1. (5 points) Prove that any finite subgroup of the unit circle is cyclic.
- 2. (5 points) Determine the unit group \mathcal{O}_K^{\times} for all imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-D})$.
- 3. (7 points) Determine the fundamental unit in $\mathbb{Q}(\sqrt{D})$ for each positive $D \leq 10$.
- 4. (5 points) Compute the Galois group of $\mathbb{Q}(\zeta_8)$, and find all fields intermediate between \mathbb{Q} and $\mathbb{Q}(\zeta_8)$.
- 5. (5 points) Compute the Galois group of $\mathbb{Q}(\zeta_{11})$, and find all fields intermediate between \mathbb{Q} and $\mathbb{Q}(\zeta_{11})$.
- 6. (3 points) Describe explicitly the splitting of all primes in the extension $\mathbb{Q}(\zeta_{11})$.
- 7. (12 points) Let f(x) be a cubic polynomial such that the splitting field K of f(x) over \mathbb{Q} has degree 6.

Enumerate all possible splitting types of primes in K. There will *not* be that many. You should find examples for all splitting types you claim can occur, and prove that other splitting types can't occur.

- 8. (20 points) Let m and n be distinct squarefree integers not equal to 1.
 - (a) Prove that $\mathbb{Q}(\sqrt{m}, \sqrt{n})$ is Galois over \mathbb{Q} with Galois group $\mathbb{Z}/2 \times \mathbb{Z}/2$. Does this field have any quadratic subfields other than $\mathbb{Q}(\sqrt{m})$ and $\mathbb{Q}(\sqrt{n})$?
 - (b) Suppose p ramifies in both $\mathbb{Q}(\sqrt{m})$ and $\mathbb{Q}(\sqrt{n})$. What happens in K? Find an example.
 - (c) Suppose p splits in both of these fields. What happens in K? Find an example.
 - (d) Suppose p is inert in both of these fields. What happens in K? Find an example.
 - (e) Suppose the splitting behavior of p is different in both of these fields. What happens in K? Find an example.
 - (f) (*David Zureick-Brown's favorite algebraic number theory problem*) Does there exist an irreducible polynomial which is reducible mod every prime?