ALGEBRAIC NUMBER THEORY - BONUS PROBLEMS

20 points total - This is due to Ravi Vakil.

(1) The game of Chomp is played between two players. Fix nonnegative integers n and m. Cookies are placed in a rectangular array at the points (x, y) where $0 \leq x \leq m$ and $0 \leq y \leq n$. The cookie at $(0,0)$ is poisoned. Two players alternate moving; a move involves picking a cookie, and eating it and every cookie above and to the right of it. The player who dies loses.

There is a nice proof that unless m and n are both zero, the first player has a winning strategy. Can you prove this? (Hint: use a strategy-stealing argument.)
(2) Suppose now that you play Infinite Chomp, where x and y run through all nonnegative integers. Suppose that you and your opponent cooperate, and attempt to make the game last infinitely many turns.

Prove that your attempt will end in futility, that the game will end after finitely many turns, and that one of you will die. 槵
(3) Generalize the previous problem to a d-dimensional board where cookies are placed on $\left(\mathbb{Z}^{+}\right)^{d}$. (In some respects, this problem may be easier.)
(4) Prove the folliowing special case of the Hilbert Basis Theorem: The polynomial ring $\mathbb{C}\left[x_{1}, x_{2}, \cdots x_{n}\right]$ is Noetherian.

