Homework 13 - Math 142, Frank Thorne (thornef@mailbox.sc.edu)

Due Friday, December 5

(a) What is a Taylor series? Why is the formula for it true?
(b) Find the Maclaurin (Taylor) series for the following functions. Determine their radii of convergence.

- $f(x)=x^{2}$
- $f(x)=e^{x}$
- $f(x)=e^{2 x}$
- $f(x)=\cos (x)$
- $f(x)=\sin (x)$
- $f(x)=\cos (4 x)$
- $f(x)=\sin \left(x^{2}\right)$
- $f(x)=x^{3} \sin (x)$.
- $f(x)=x+e^{x}$.
(c) Explain why the Taylor series for e^{x} gives you a formula for e.
(d) Compute e, as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within $\frac{1}{10}$, but you don't need to show this.
(e) Compute $1 / e$, as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within $\frac{1}{100}$, but you don't need to show this.
(f) Compute $\sin (1 / 10)$, as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within $\frac{1}{100}$,
(g) Compute $\sqrt{1.1}$, as a fraction or decimal, to fairly good accuracy. Your estimate should plausibly be within $\frac{1}{1000}$, but you don't need to show this.
(h) Stewart, 11.10, 29, 30.

Additional problems:
(a) Stewart, 11.10, 15, 16, 31-36.

Bonus: Use Taylor series to explain why $e^{i x}=\cos (x)+i \sin (x)$.

