Practice Examination 3 - Math 141, Frank Thorne (thornef@mailbox.sc.edu)

Friday, November 18, 2011

Please work without books, notes, calculators, or any assistance from others. If you have any questions, feel free to ask me.
(1) Verify that the function $f(x)=5-12 x+3 x^{2}$ satisfies the hypotheses of Rolle's Theorem on the interval $[1,3]$. Then, find all numbers c that satisfy the conclusion of Rolle's theorem.
(2) Sketch the graph of the function $h(x)=x^{5}-x$. In addition, find the intervals of increase or decrease, find the local maximum and minimum values, and find where the graph is concave up and concave down.
(3) Given the graph on Stewart, p. 345, Problem 51, sketch an antiderivative F, given that $F(0)=1$.
(4) A farmer wants to fence an area of 15,000 square feet in a rectangular field and then divide it in half with a fence parallel to one of the sides of the rectangle. How can he do this so as to minimize the total length of the fence?
(5) A boat is pulled into a dock by a rope attached to the bow of the boat, passing through a pulley on the dock that is 1 m higher than the bow of the boat. If the rope is pulled in at a rate of $1 \mathrm{~m} / \mathrm{s}$, how fast is the boat approaching the dock when it is 8 m from the dock?
(6) What is wrong with this?

$$
\int_{-2}^{1} x^{-4} d x=\left.\frac{x^{-3}}{-3}\right|_{-2} ^{1}=-\frac{3}{8} .
$$

(7) Evaluate

$$
\int_{1}^{2} \frac{4+u^{2}}{u^{3}} d u
$$

