Homework 5 - Math 141, Frank Thorne (thornef@mailbox.sc.edu)

Due Friday, September 23

(a) If $f(x)=c$, where c is a constant, find $f^{\prime}(x)$ using the definition. Draw a picture which explains your conclusion.
(b) If $f(x)=x^{n}$, where n is a positive integer, explain why $f^{\prime}(x)=n x^{n-1}$.
(c) If f and g are two functions, draw a picture which explains why $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ and why $(f g)^{\prime}=f g^{\prime}+f^{\prime} g$. Why is it not true that $(f g)^{\prime}=f^{\prime} g^{\prime}$?
(d) Explain why the derivative of e^{x} is equal to e^{x}. You may take for granted that $\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
(e) Stewart, Ch. 3.1, 2-34, 45-46; even required, odd recommended.
(f) Stewart, Ch. 3.1, 49. (Note: The acceleration is the derivative of the velocity.)
(g) What is the 500th derivative of $f(x)=x^{100}$? Explain why.
(h) Stewart, Ch. 3.2, 1-18, 27-30; even required, odd recommended.
(i) Stewart, Ch. 3.2, 31-34.
(j) Explain why $\frac{d}{d x}(\sin x)=\cos x$ and $\frac{d}{d x}(\cos x)=-\sin x$.
(k) Find $\frac{d f}{d x}$ for the functions $f(x)=\tan x, f(x)=\cot x, f(x)=\sec x$, and $f(x)=\csc x$.
(l) Find the 4th, 7th, 23rd, and 4000001th derivatives of $\sin x$ and $\cos x$.
(m) Explain why $\lim _{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$.
(n) Stewart, Ch. 3.3, 3-14, 21-24; even required, odd recommended.
(o) Stewart, Ch. 3.3, 31, 35.
(p) Stewart, Ch. 3.3, 39-44; even required, odd recommended.
(q) Stewart, Ch. 3.3, 49.

