Homework 2 - Math 141, Frank Thorne (thornef@mailbox.sc.edu)

Due Friday, September 2

As always, please show your work and explain yourself clearly.
(a) Suppose that you are given the graph of the function $y=f(x)$, and you want to find the slope of the tangent line to the graph at the point $(a, f(a))$. Explain how to guess this slope by finding the slopes of secant lines.
(b) Given the slope of the tangent line to the graph of $y=f(x)$ at the point ($a, f(a)$), explain how to find the equation of this line.
(c) By finding the slopes of appropriate secant lines, determine the equation of the tangent line to $y=x^{2}$ at $(1,1)$.
(d) By finding the slopes of appropriate secant lines, determine the equation of the tangent line to $y=-x$ at $(4,-4)$.
(e) By finding the slopes of appropriate secant lines, determine the equation of the tangent line to $y=x^{3}-3$ at $(1,-2)$.
(f) Stewart, Ch. 2.2, 1-4, 7, 9, 13.
(g) Stewart, Ch. 2.3, 11-30, 40, 42.

For this part only, the even problems are required and the odd problems are strongly recommended.
(h) Consider the following definition of a limit: 'We say that $\lim _{x \rightarrow a} f(x)=c$ if $f(x)$ gets closer and closer to c as x gets closer and closer to a.'
What is wrong with this definition?
(i) Give the definition of a limit, e.g., explain what it means to say that $\lim _{x \rightarrow a} f(x)=c$. You may explain in words, or using the $\epsilon-\delta$ formalism.
(j) Explain what it means for a function $f(x)$ to be continuous. (The informal definition is okay.)
(k) Stewart, Ch. 2.5, 7-8.
(l) Graph the following functions. Which are continuous? For the functions that are not continuous, explain why.

$$
f(x)=x^{2}, f(x)=\sin (x), f(x)=\frac{1}{x-2}, f(x)=\frac{x-1}{x^{2}-1}, f(x)=e^{x} .
$$

