\qquad

Math 547 - Practice Exam \#3

1. (a). Explicitly describe the elements of the field $\mathbb{Q}(\pi)$.

Solution: The elements of $\mathbb{Q}(\pi)$ are quotients of polynomials in π.
(b). Explicitly describe the elements of the field $\mathbb{Q}(\sqrt[3]{2})$.

Solution: $\mathbb{Q}(\sqrt[3]{2})=\{a+b \sqrt[3]{2}+c \sqrt[3]{4}: a, b, c \in \mathbb{Q}\}$.
(c). Give a basis for the field $\mathbb{Q}(\sqrt{3}, \sqrt{2}, i)$ over \mathbb{Q}.

Solution: $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}, i, i \sqrt{2}, i \sqrt{3}, i \sqrt{6}\}$.
(d). Define algebraic extension.

Solution: An extension field E of a field F is an algebraic extension if every element of E is algebraic over F.
2. Prove: If $F \subseteq K \subseteq E$ are fields and K is a finite extension of F and E is a finite extension of K, then $[E: F]=[E: K][K: F]$.
Solution: See your notes.
3. Suppose that γ is a zero of $p(x)=x^{2}+2 x+3 \in Z_{5}[x]$ in some extension field E.

Note: $p(x)=x^{2}+2 x+3$ is irreducible in $Z_{5}[x]$; you need not verify this.
(a). How many elements are there in $Z_{5}(\gamma)$? Explain.

Solution: $Z_{5}(\gamma)=\left\{a+b \gamma: a, b \in Z_{5}\right\}$. Moreover, each element of $Z_{5}(\gamma)$ is uniquely expressible in the form $a+b \gamma$. There are 5 ways to choose the values for each of a and b. Thus there are 25 elements in $Z_{5}(\gamma)$.
(b). Express the product $(1+2 \gamma)(3+\gamma)$ in the form $a+b \gamma, a, b \in Z_{5}$.

Solution: $(1+2 \gamma)(3+\gamma)=2+3 \gamma$.
(c). Find an expression (in terms of γ) for the other zero of $p(x)=x^{2}+2 x+3$ in E.
Solution: dividing $x^{2}+2 x+3$ by $x-\gamma$ gives a quotient of $x+(\gamma+2)$. Thus the other zero is $-(\gamma+2)=4 \gamma+3$.
4. Let D be an integral domain with $F \subseteq D \subseteq E$ where F and E are fields and E is a finite extension of F. Show that D is a field.
Solution: See your notes - this is a problem from your text.
\qquad
5. Show directly that $\alpha=\sqrt{i+\sqrt{3}}$ is an algebraic number and determine its degree. Fully justify your answer.
Hint: You may take as given that $\sqrt{i+\sqrt{3}} \notin \mathbb{Q}(i, \sqrt{3})$.
Solution: Letting $x=\sqrt{i+\sqrt{3}}$, we get $x^{2}=i+\sqrt{3}$.
So, $x^{4}=-1+2 i \sqrt{3}+3=2+2 i \sqrt{3} \Rightarrow x^{4}-2=2 i \sqrt{3}$. Thus $x^{8}-4 x^{4}+4=-12$.
This implies that $\alpha=\sqrt{i+\sqrt{3}}$ satisfies the polynomial $p(x)=x^{8}-4 x^{4}+16$.
It might take some effort to show directly that this polynomial is irreducible and hence that the degree of α is 8 .

However, since $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{R}, i \notin \mathbb{Q}(\sqrt{3})$. Thus i satisfies the irreducible polynomial $x^{2}+1 \in \mathbb{Q}(\sqrt{3})[x]$ and so $[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}(\sqrt{3})]=2$.
Now it follows easily that $[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}): \mathbb{Q}]=4$.
Also, $[\mathbb{Q}(\sqrt{i+\sqrt{3}}): \mathbb{Q}(i, \sqrt{3})]=2$, since $\alpha=\sqrt{i+\sqrt{3}} \notin \mathbb{Q}(i, \sqrt{3})$ and α satisfies $p(x)=x^{2}-(i+\sqrt{3})$.

Thus, $[\mathbb{Q}(\sqrt{i+\sqrt{3}}): \mathbb{Q}]=[\mathbb{Q}(\sqrt{i+\sqrt{3}}): \mathbb{Q}(i, \sqrt{3})][\mathbb{Q}(i, \sqrt{3}): \mathbb{Q}]=8$.
6. Given that π is transcendental, show that $\sqrt{\pi}$ cannot be algebraic of degree at most 2.

Solution: Suppose that $\sqrt{\pi}$ is algebraic of degree at most 2 . Then there is a polynomial $p(x)=a x^{2}+b x+c \in \mathbb{Q}[x]$ such that $p(\sqrt{\pi})=0$.
So we have, $0=p(\sqrt{\pi})=a \pi+b \sqrt{\pi}+c \Rightarrow a \pi+c=-b \sqrt{\pi}$. Thus squaring both sides we get.
Hence for the polynomial $p(x)=a^{2} x^{2}+\left(2 a c-b^{2}\right) x+c^{2}, p(\pi)=0$. So, π would be algebraic of degree at most $2 . \otimes$

Note: A simple, but more wordy, extension of this idea shows that $\sqrt{\pi}$ is not algebraic of any degree; i.e., $\sqrt{\pi}$ is transcendental.
\qquad
7. Suppose that $p(x) \in F[x]$ is irreducible of degree n and that α is a zero of $p(x)$ in some extension field E. Thus $p(x)$ is the minimal polynomial for α.
Let $S=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$. Show that S is linearly independent in $F(\alpha)$.
Note: Argue directly, you may not use the fact that S is a basis for $F(\alpha)$.
Solution: Suppose that there were elements $b_{0}, b_{1}, \ldots, b_{n-1} \in F$ not all zero such that $\sum_{i=0}^{n-1} b_{i} \alpha^{i}=0$. Then $q(x)=\sum_{i=0}^{n-1} b_{i} x^{i}$ would be a non-zero polynomial of degree less than that of $p(x)$ and $q(\alpha)=0$. This contradicts $p(x)$ being the minimal polynomial for α.
8. Let α be algebraic in E over F and suppose that $p(x)$ is its minimal polynomial. Then show that if $f(x) \in F[x]$ with $f(\alpha)=0$, then $p(x)$ divides $f(x)$.

Solution: See your notes.

