Math 547 – Practice Exam #3

(a). Explicitly describe the elements of the field Q(π).
 Solution: The elements of Q(π) are quotients of polynomials in π.

(b). Explicitly describe the elements of the field $\mathbb{Q}(\sqrt[3]{2})$. Solution: $\mathbb{Q}(\sqrt[3]{2}) = \{a + b\sqrt[3]{2} + c\sqrt[3]{4} : a, b, c \in \mathbb{Q}\}$.

(c). Give a basis for the field $\mathbb{Q}(\sqrt{3}, \sqrt{2}, i)$ over \mathbb{Q} . Solution: $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}, i, i\sqrt{2}, i\sqrt{3}, i\sqrt{6}\}$.

(d). Define algebraic extension. Solution: An extension field E of a field F is an algebraic extension if every element of E is algebraic over F.

- Prove: If F ⊆ K ⊆ E are fields and K is a finite extension of F and E is a finite extension of K, then [E : F] = [E : K][K : F].
 Solution: See your notes.
- 3. Suppose that γ is a zero of p(x) = x² + 2x + 3 ∈ Z₅[x] in some extension field E.
 Note: p(x) = x² + 2x + 3 is irreducible in Z₅[x]; you need not verify this.
 (a). How many elements are there in Z₅(γ)? Explain.
 Solution: Z₅(γ) = {a + bγ : a, b ∈ Z₅}. Moreover, each element of Z₅(γ) is uniquely expressible in the form a + bγ. There are 5 ways to choose the values for each of a and b. Thus there are 25 elements in Z₅(γ).

(b). Express the product $(1+2\gamma)(3+\gamma)$ in the form $a+b\gamma$, $a,b \in Z_5$. Solution: $(1+2\gamma)(3+\gamma) = 2+3\gamma$.

(c). Find an expression (in terms of γ) for the other zero of $p(x) = x^2 + 2x + 3$ in *E*.

Solution: dividing $x^2 + 2x + 3$ by $x - \gamma$ gives a quotient of $x + (\gamma + 2)$. Thus the other zero is $-(\gamma + 2) = 4\gamma + 3$.

4. Let D be an integral domain with F ⊆ D ⊆ E where F and E are fields and E is a finite extension of F. Show that D is a field.
Solution: See your notes – this is a problem from your text.

5. Show directly that $\alpha = \sqrt{i + \sqrt{3}}$ is an algebraic number and determine its degree. Fully justify your answer.

Hint: You may take as given that $\sqrt{i} + \sqrt{3} \notin \mathbb{Q}(i,\sqrt{3})$. **Solution**: Letting $x = \sqrt{i} + \sqrt{3}$, we get $x^2 = i + \sqrt{3}$. So, $x^4 = -1 + 2i\sqrt{3} + 3 = 2 + 2i\sqrt{3} \Rightarrow x^4 - 2 = 2i\sqrt{3}$. Thus $x^8 - 4x^4 + 4 = -12$. This implies that $\alpha = \sqrt{i} + \sqrt{3}$ satisfies the polynomial $p(x) = x^8 - 4x^4 + 16$.

It might take some effort to show directly that this polynomial is irreducible and hence that the degree of α is 8.

However, since $\mathbb{Q}(\sqrt{3}) \subseteq \mathbb{R}$, $i \notin \mathbb{Q}(\sqrt{3})$. Thus *i* satisfies the irreducible polynomial $x^2 + 1 \in \mathbb{Q}(\sqrt{3})[x]$ and so $[\mathbb{Q}(i, \sqrt{3}):\mathbb{Q}(\sqrt{3})] = 2$. Now it follows easily that $[\mathbb{Q}(i, \sqrt{3}):\mathbb{Q}] = [\mathbb{Q}(i, \sqrt{3}):\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}):\mathbb{Q}] = 4$. Also, $[\mathbb{Q}(\sqrt{i+\sqrt{3}}):\mathbb{Q}(i,\sqrt{3})] = 2$, since $\alpha = \sqrt{i+\sqrt{3}} \notin \mathbb{Q}(i,\sqrt{3})$ and α satisfies $p(x) = x^2 - (i + \sqrt{3})$.

Thus,
$$\left[\mathbb{Q}\left(\sqrt{i+\sqrt{3}}\right):\mathbb{Q}\right] = \left[\mathbb{Q}\left(\sqrt{i+\sqrt{3}}\right):\mathbb{Q}\left(i,\sqrt{3}\right)\right] \left[\mathbb{Q}\left(i,\sqrt{3}\right):\mathbb{Q}\right] = 8$$
.

6. Given that π is transcendental, show that $\sqrt{\pi}$ cannot be algebraic of degree at most 2.

Solution: Suppose that $\sqrt{\pi}$ is algebraic of degree at most 2. Then there is a polynomial $p(x) = ax^2 + bx + c \in \mathbb{Q}[x]$ such that $p(\sqrt{\pi}) = 0$. So we have, $0 = p(\sqrt{\pi}) = a\pi + b\sqrt{\pi} + c \Rightarrow a\pi + c = -b\sqrt{\pi}$. Thus squaring both sides we get. Hence for the polynomial $p(x) = a^2x^2 + (2ac - b^2)x + c^2$, $p(\pi) = 0$. So, π would

be algebraic of degree at most 2. \otimes

Note: A simple, but more wordy, extension of this idea shows that $\sqrt{\pi}$ is not algebraic of any degree; i.e., $\sqrt{\pi}$ is transcendental.

7. Suppose that p(x) ∈ F[x] is irreducible of degree n and that α is a zero of p(x) in some extension field E. Thus p(x) is the minimal polynomial for α.
Let S = {1, α, α², ..., αⁿ⁻¹}. Show that S is linearly independent in F(α).
Note: Argue directly, you may not use the fact that S is a basis for F(α).

Solution: Suppose that there were elements $b_0, b_1, ..., b_{n-1} \in F$ not all zero such that $\sum_{i=0}^{n-1} b_i \alpha^i = 0$. Then $q(x) = \sum_{i=0}^{n-1} b_i x^i$ would be a non-zero polynomial of degree less than that of p(x) and $q(\alpha) = 0$. This contradicts p(x) being the minimal polynomial for α .

8. Let α be algebraic in *E* over *F* and suppose that p(x) is its minimal polynomial. Then show that if $f(x) \in F[x]$ with $f(\alpha) = 0$, then p(x) divides f(x).

Solution: See your notes.