Math 547 – Practice Exam #3

- 1. (a). Explicitly describe the elements of the field $\mathbb{Q}(\pi)$.
 - (b). Explicitly describe the elements of the field $\mathbb{Q}(\sqrt[3]{2})$.
 - (c). Give a basis for the field $\mathbb{Q}(\sqrt{3}, \sqrt{2}, i)$ over \mathbb{Q} .
 - (d). Define algebraic extension.
- 2. **Prove**: If $F \subseteq K \subseteq E$ are fields and *K* is a finite extension of *F* and *E* is a finite extension of *K*, then [E:F] = [E:K][K:F].
- 3. Suppose that γ is a zero of $p(x) = x^2 + 2x + 3 \in Z_5[x]$ in some extension field *E*. Note: $p(x) = x^2 + 2x + 3$ is irreducible in $Z_5[x]$; you need not verify this.
 - (a). How many elements are there in $Z_5(\gamma)$? Explain.
 - (b). Express the product $(1+2\gamma)(3+\gamma)$ in the form $a+b\gamma$, $a,b \in Z_5$.
 - (c). Find an expression (in terms of γ) for the other zero of $p(x) = x^2 + 2x + 3$ in *E*.
- 4. Let *D* be an integral domain with $F \subseteq D \subseteq E$ where *F* and *E* are fields and *E* is a finite extension of *F*. Show that *D* is a field.
- 5. Show directly that α = √i + √3 is an algebraic number and determine its degree. Fully justify your answer.
 Hint: You may take as given that √i + √3 ∉ Q(i,√3).
- 6. Given that π is transcendental, show that $\sqrt{\pi}$ cannot be algebraic of degree at most 2.
- 7. Suppose that p(x) ∈ F[x] is irreducible of degree n and that α is a zero of p(x) in some extension field E. Thus p(x) is the minimal polynomial for α.
 Let S = {1, α, α², ..., αⁿ⁻¹}. Show that S is linearly independent in F(α).
 Note: Argue directly, you may not use the fact that S is a basis for F(α).
- 8. Let α be algebraic in *E* over *F* and suppose that p(x) is its minimal polynomial. Then show that if $f(x) \in F[x]$ with $f(\alpha) = 0$, then p(x) divides f(x).