\qquad

Math 547 - Practice Exam \#3

1. (a). Explicitly describe the elements of the field $\mathbb{Q}(\pi)$.
(b). Explicitly describe the elements of the field $\mathbb{Q}(\sqrt[3]{2})$.
(c). Give a basis for the field $\mathbb{Q}(\sqrt{3}, \sqrt{2}, i)$ over \mathbb{Q}.
(d). Define algebraic extension.
2. Prove: If $F \subseteq K \subseteq E$ are fields and K is a finite extension of F and E is a finite extension of K, then $[E: F]=[E: K][K: F]$.
3. Suppose that γ is a zero of $p(x)=x^{2}+2 x+3 \in Z_{5}[x]$ in some extension field E. Note: $p(x)=x^{2}+2 x+3$ is irreducible in $Z_{5}[x]$; you need not verify this.
(a). How many elements are there in $Z_{5}(\gamma)$? Explain.
(b). Express the product $(1+2 \gamma)(3+\gamma)$ in the form $a+b \gamma, a, b \in Z_{5}$.
(c). Find an expression (in terms of γ) for the other zero of $p(x)=x^{2}+2 x+3$ in E.
4. Let D be an integral domain with $F \subseteq D \subseteq E$ where F and E are fields and E is a finite extension of F. Show that D is a field.
5. Show directly that $\alpha=\sqrt{i+\sqrt{3}}$ is an algebraic number and determine its degree. Fully justify your answer.
Hint: You may take as given that $\sqrt{i+\sqrt{3}} \notin \mathbb{Q}(i, \sqrt{3})$.
6. Given that π is transcendental, show that $\sqrt{\pi}$ cannot be algebraic of degree at most 2.
7. Suppose that $p(x) \in F[x]$ is irreducible of degree n and that α is a zero of $p(x)$ in some extension field E. Thus $p(x)$ is the minimal polynomial for α.
Let $S=\left\{1, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$. Show that S is linearly independent in $F(\alpha)$.
Note: Argue directly, you may not use the fact that S is a basis for $F(\alpha)$.
8. Let α be algebraic in E over F and suppose that $p(x)$ is its minimal polynomial. Then show that if $f(x) \in F[x]$ with $f(\alpha)=0$, then $p(x)$ divides $f(x)$.
