Math 546 Final Exam Review

Definitions

Be able to define and use the following terms.

group	identity	inverse
subgroup	normal subgroup	Kernel of a homomorphism
semigroup	Well Ordering	
	Principle	$\phi(A)$ where A is a subset of the group G,
		and ϕ is a homomorphism.
subgroup	Abelian group	cyclic group
homomorphism	homomorphic	isomorphism
	image	
automorphism,	AB where A and B	[G:H], the index of H in G .
$\operatorname{Aut}(G)$	are subsets of the	
	group G.	
left cosets	partition	G / H
automorphism and	center of a group	centralizer of an element of a group
inner automorphism		
and $Aut(G)$ and		
$\operatorname{Inn}(G).$		
equivalence relation	Euler Phi-function $\phi(n)$	The groups $U(n)$, Z_n , S_n , A_n , $GL(2, R)$
idempotent	relatively prime	inner automorphism, Inn(G)
congruence	greatest common	countable
$x \equiv y \mod n$	divisor	

Important Theorems

Understand, be able to state, and be able to apply the following results You should be able to *prove* those statements that are followed by a "(##)"

Theorem. Every finite semigroup has an idempotent.

Theorem. The greatest common divisor of positive integers *n* and *m* is the least positive element in the set $A = \{an + bm : a, b \in Z\}$ (##)

Theorem (Cantor). For any set *S*, there does not exist a function $f : S \to P(S)$ that is onto. Here P(S) denotes the power set of *S*.

Theorem If *H* is a normal subgroup of the group *G* then G/H is a group under the operation (aH)(bH) = abH.

Theorem (Cauchy). If G is a finite Abelian group whose order is divisible by a prime p, then G has an element of order p.

Theorem (LaGrange). If *H* is a subgroup of the finite group *G*, then the order of *H* divides the order of *G*. So, |G| = |H|[G:H], where $[G:H] = \frac{|G|}{|H|}$ is the *index* of *H* in *G*.

Corollary If g is an element of the finite group G, then o(g) divides |G|. (##)

Corollary If the group *G* has order *n*, then for any *g* in *G*, $g^n = e$. (##)

Theorem (Euler) If *a* is a positive integer that is relatively prime to the positive integer *n*, then $a^{\phi(n)} \equiv 1 \mod n$.

Theorem (Fermat) If *a* is a positive integer that is not divisible by the prime *p*, then $a^{p-1} \equiv 1 \mod p$.

Theorem. If $\phi: G \to H$ is a homomorphism from G onto H, and if $K = \ker \phi$, then $G_K \cong H$. Moreover, the mapping $\gamma: G_K \to H$ defined by $\gamma(aK) = \phi(a)$ is an isomorphism. (##)

Theorem. A group H is a homomorphic image of the group G if and only if H is isomorphic to G/K for some normal subgroup K of G.

Theorem. Let G be a group, Z the center of G, and Inn(G) the set of all inner automorphisms of G. Then $G_Z \cong Inn(G)$.

Theorem (Cayley) Every group G is isomorphic to a subgroup of S_G .

Theorem If *H* is *any* subgroup of *G*, then the relation $a \equiv b \mod H \Leftrightarrow a^{-1}b \in H$ is an equivalence relation. (##)

- This relation also has the property that for any element g in G,
- (i). $a \equiv b \mod H \Rightarrow ga \equiv gb \mod H$ (i.e., 'multiplication' on the left preserves congruences. (##)
- (ii). If *H* is a normal subgroup, then $a \equiv b \mod H \Rightarrow ag \equiv bg \mod H$. (##)

Theorem. For a finite group *G*, the 'multiplication table' of *G* is a Latin Square.

Theorem. Let H be a subgroup of the group G. Then each of the following conditions is equivalent to H being a normal subgroup.

(i). For every $h \in H$, $g \in G$, $ghg^{-1} \in H$ (this was our definition of normal).

(ii). For any g in G, gH = Hg (i.e., the left and right cosets are exactly the same.)

(iii). For any g in G, $gHg^{-1} = H$.

(iv). H is the kernel of some homomorphism with domain G.

Theorem. If *H* is a finite subset of a group *G*, then *H* is a subgroup iff it is closed.

Theorem. If G and H are any cyclic groups of order n, then G is isomorphic to H. Consequently, every cyclic group on n elements is isomorphic to Z_n .

Theorem. The only infinite cyclic group (up to isomorphism) is the integers under addition.

Theorem. Every subgroup of a cyclic group is cyclic. (##)

Theorem. If $k \in Z_n$ is relatively prime to *n*, then *k* generates $(Z_n, +)$.

Theorem. Let *a* and *b* be elements of the Abelian group *G* with o(a) = n, o(b) = m. If *n* and *m* are relatively prime, then o(ab) = o(a)o(b).

Fundamental Properties of homomorphisms.

Theorem Let $\phi: G \to H$ be a homomorphism. Then

- (a). $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in G$ that's the *definition* of a homomorphism.
- (b). $\phi(e_G) = e_H$
- (c). $ker(\phi)$ is a normal subgroup of G. (##)
- (d). ϕ is 1-1 iff ker(f) = { e_G } (##)
- (e). If A is an Abelian subgroup of G, then $\phi(A)$ is Abelian as well.
- (f). For any x in G, $\phi(x^{-1}) = [\phi(x)]^{-1}$.
- (g) If ϕ is onto *H* and *A* is a (normal) subgroup of *G*, then $\phi(A)$ is a (normal) subgroup of *H*.
- (h) *H* is a normal subgroup of *G* if and only if $H = \text{ker}(\phi)$ for some homomorphism ϕ .
- (i). $\phi: G \to G/_H$ defined by $\phi(g) = gH$ is a homomorphism of G onto H and the kernel of ϕ is H.