Math 250
 Problem Set 19

1. Set up the integral below using polar coordinates [You need not evaluate].

$$
\int_{1}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} x^{2}+y^{2} d y d x
$$

Solution: Done in class.
2. (a). Determine the spherical coordinates of the point having rectangular coordinates $(2 \sqrt{3}, 6,4)$. Note that this is a point in the first quadrant.
Solution: Done in class.
(b). Convert the equation $\rho=\sec \phi$ into rectangular coordinates and describe what kind of surface it is. (It is not a sphere!)
Solution: Multiply by $\cos \phi$ on both sides and simplify to get $z=1$.
3. (a). If a point has spherical coordinates $\rho=4, \phi=\pi / 6$, and $\theta=\pi / 3$ then
(i). Determine the rectangular coordinates (x, y, z))

Solution: $\quad(1, \sqrt{3}, 2 \sqrt{3})$
(ii). Determine the cylindrical coordinates (r, θ, z).

Solution: $\left(2, \frac{\pi}{3}, 2 \sqrt{3}\right)$
(b). Change the equation $\rho=2 \sin \phi \cos \theta$ to rectangular coordinates and describe its graph
Solution: Multiply both sides by ρ to get,
$\rho^{2}=2 \rho \sin \phi \cos \theta \Leftrightarrow x^{2}+y^{2}+z^{2}=2 x \Leftrightarrow(x-1)^{2}+y^{2}+z^{2}=1$.
So, this is a sphere of radius 1 and center at the origin.
4. Express the volume of the solid lying below the sphere $x^{2}+y^{2}+z^{2}=13$ and above the plane $z=2$ as an iterated triple integral. Don't integrate.
Solution: Done in class.
5. Show that the integral $\int_{0}^{\infty} e^{-x^{2}} d x$ converges.

Solution: This follows from the fact that $F(b)=\int_{0}^{b} e^{-x^{2}} d x$ is an increasing function of $b \geq 0$ and that $F(b)$ is bounded from above because $\int_{1}^{\infty} e^{-x^{2}} d x \leq \int_{1}^{\infty} e^{-x} d x=1$ [Note that for $x \geq 1, e^{-x^{2}} \leq e^{-x}$].

Section 5.5 \#13, 14, 21, 27
Review Exercises (Page 365): \#9, 13,

