Math 250 Problem Set 19

1. Set up the integral below using polar coordinates [You need not evaluate].

$$\int_{1}^{2} \int_{0}^{\sqrt{2x-x^{2}}} x^{2} + y^{2} dy dx.$$

Solution: Done in class.

2. (a). Determine the spherical coordinates of the point having rectangular coordinates $(2\sqrt{3}, 6, 4)$. Note that this is a point in the first quadrant.

Solution: Done in class.

(b). Convert the equation $\rho = \sec \phi$ into rectangular coordinates and describe what kind of surface it is. (It is *not* a sphere!)

Solution: Multiply by $\cos \phi$ on both sides and simplify to get z = 1.

- 3. (a). If a point has spherical coordinates $\rho = 4$, $\phi = \frac{\pi}{6}$, and $\theta = \frac{\pi}{3}$ then
 - (i). Determine the rectangular coordinates (x, y, z))

Solution: $(1, \sqrt{3}, 2\sqrt{3})$

(ii). Determine the cylindrical coordinates (r, θ, z) .

Solution: $\left(2, \frac{\pi}{3}, 2\sqrt{3}\right)$

(b). Change the equation $\rho = 2\sin\phi\cos\theta$ to rectangular coordinates and describe its graph

Solution: Multiply both sides by ρ to get,

$$\rho^2 = 2\rho \sin\phi \cos\theta \Leftrightarrow x^2 + y^2 + z^2 = 2x \Leftrightarrow (x-1)^2 + y^2 + z^2 = 1.$$

So, this is a sphere of radius 1 and center at the origin.

- 4. Express the volume of the solid lying below the sphere $x^2 + y^2 + z^2 = 13$ and above the plane z = 2 as an iterated triple integral. *Don't integrate*. Solution: Done in class.
- 5. Show that the integral $\int_0^\infty e^{-x^2} dx$ converges.

Solution: This follows from the fact that $F(b) = \int_0^b e^{-x^2} dx$ is an increasing function of $b \ge 0$ and that F(b) is bounded from above because

$$\int_{1}^{\infty} e^{-x^{2}} dx \le \int_{1}^{\infty} e^{-x} dx = 1 \text{ [Note that for } x \ge 1, \ e^{-x^{2}} \le e^{-x} \text{]}.$$

Section 5.5 #13, 14, 21, 27

Review Exercises (Page 365): #9, 13,