Name \qquad
June 30, 2003

Math 142
 Exam \#3
 Show All Work

For each series in problems $1-5$, Apply an appropriate convergence test to determine if the series converges or diverges. Explain your work clearly, naming the test being used, and fully evaluating any integrals and/or limits completely and explain their significance.

1. $\bigsqcup_{n=1} \frac{(2 n \square 1)!}{5^{n}(n!)^{2}}$
2. (a). $\square_{n=1}^{B} \frac{\square 3 n+1}{\square} \square_{\square}^{n} \square^{n}$
(b). $\bigsqcup_{n=1} \frac{1}{\left(\tan ^{\square 1} n\right)^{2}}$
3. (a). Evaluate the sum: $\square_{n=2} \frac{2^{n+1}+5}{2^{3 n \square 2}}=$
(b). Evaluate the limit: $\lim _{n \square} \frac{\square}{\square n+3} \square^{2 n}$

Name \qquad
4. $\square_{n=1} \frac{2 n+1}{\sqrt{n^{6}+3 n^{2}+5}}$
5. Use the integral test to determine if $\square_{n=1} \frac{n}{e^{n}}$ converges.
\qquad June 30, 2003
6. (a). Evaluate the nth partial sum $\square_{k=1}^{n} \frac{\square k+1}{\square k+2} \square \frac{k}{k+1} \square=$ \qquad (An expression in n)
(b). What is the value of $\square_{k=1} \frac{\square k+1}{\square k+2} \square \frac{k}{k+1} \square=$ \qquad (a number or infinity)
7. Find the interval of convergence of the power series $\square_{n=0} \frac{(x \square 2)^{n}}{3^{n} \sqrt{n}}$.
\qquad
8. (a). Find the series expansion of $\frac{\sin x+\cos x}{e^{x}}$ to terms of degree 3 .
(b). Given that $\sqrt{1+x}=1+\frac{1}{2} x \square \frac{1}{8} x^{2}+\frac{3}{16} x^{3} \square \frac{5}{128} x^{4}$, find the series expansion of $\frac{1}{\sqrt{1+2 x}}$ to terms of degree 3. (Hint: $\frac{1}{\sqrt{1+x}}=2 \frac{d}{d x}[\sqrt{1+x}]$?)
9. Find the Taylor polynomial of degree 4 around $x=1$ of $f(x)=\sqrt{x}$.

