Due Thursday - Sept. 7

- 1. Problems on Cesaro means:
 - (a) Turn in (after all) the earlier assigned problem on Cesaro means of sequences: Convergence implies Cesaro summability.
 - (b) Suppose that both $\{a_n\}_n$ and $\{b_n\}_n$ are Cesaro summable, then show that the sequence $c_n := \alpha a_n + \beta b_n$ is also.
 - (c) Determine the Cesaro means of the sequence $\left\{(-1)^n \frac{1}{n}\right\}$.
- 2. How can you tell if a norm actually arises from an inner product? Use a 'bullet' to show that the inner product in an inner product space over the real scalars can be computed from the norm by the formula:

$$\langle f,g \rangle = \frac{1}{2} \left(\|f\|^2 + \|g\|^2 - \|f-g\|^2 \right)$$

Extra Credit: Derive a similar formula when the scalar field is C.

- 3. Consider the collection $\phi_n(t) = \cos(nt)$ in $L^2(-\pi, \pi)$. Show that this collection is orthogonal where the inner product is given by $\int_{-\pi}^{\pi} f(t)g(t)dt$. What is the norm of ϕ_n ? (Hint: use the trig identity $\cos(a+b) + \cos(a-b) = 2\cos(a)\cos(b)$.)
- 4. A metric space is called *separable* if it has a countable dense subset. Let H be a Hilbert space with the natural metric (i.e. $d(f,g) := ||f g||_H$) and let $\Phi := \{\phi_\alpha\}_\alpha$ be any orthonormal collection from H.
 - (a) Compute the distance between any two distinct members of Φ .
 - (b) Prove that Φ must be countable if H is separable.
 - (c) Sketch the proof that if Φ is countable and maximal in the partial ordering of set inclusion (existence by Zorn's lemma), then H is separable.
- 5. Let X be a Banach space (i.e. a complete normed linear space). Prove that if $M_n := ||f_n||_X$ and the sequence $\{\sum_{n=1}^N M_n\}_N$ is bounded in \mathcal{R} , then the series $\sum_{n=1}^{\infty} f_n$ converges in X. (Recall that for the series converge, we just mean that the sequence of partial sums convergence as a sequence in X).