Math 750-HW \# 1

Due Thursday - Sept. 7

1. Problems on Cesaro means:
(a) Turn in (after all) the earlier assigned problem on Cesaro means of sequences: Convergence implies Cesaro summability.
(b) Suppose that both $\left\{a_{n}\right\}_{n}$ and $\left\{b_{n}\right\}_{n}$ are Cesaro summable, then show that the sequence $c_{n}:=\alpha a_{n}+\beta b_{n}$ is also.
(c) Determine the Cesaro means of the sequence $\left\{(-1)^{n}-\frac{1}{n}\right\}$.
2. How can you tell if a norm actually arises from an inner product? Use a 'bullet' to show that the inner product in an inner product space over the real scalars can be computed from the norm by the formula:

$$
<f, g>=\frac{1}{2}\left(\|f\|^{2}+\|g\|^{2}-\|f-g\|^{2}\right)
$$

Extra Credit: Derive a similar formula when the scalar field is \mathcal{C}.
3. Consider the collection $\phi_{n}(t)=\cos (n t)$ in $L^{2}(-\pi, \pi)$. Show that this collection is orthogonal where the inner product is given by $\int_{-\pi}^{\pi} f(t) g \overline{(t)} d t$. What is the norm of ϕ_{n} ? (Hint: use the trig identity $\cos (a+b)+\cos (a-b)=2 \cos (a) \cos (b)$.)
4. A metric space is called separable if it has a countable dense subset. Let H be a Hilbert space with the natural metric (i.e. $d(f, g):=\|f-g\|_{H}$) and let $\Phi:=\left\{\phi_{\alpha}\right\}_{\alpha}$ be any orthonormal collection from H.
(a) Compute the distance between any two distinct members of Φ.
(b) Prove that Φ must be countable if H is separable.
(c) Sketch the proof that if Φ is countable and maximal in the partial ordering of set inclusion (existence by Zorn's lemma), then H is separable.
5. Let X be a Banach space (i.e. a complete normed linear space). Prove that if $M_{n}:=\left\|f_{n}\right\|_{X}$ and the sequence $\left\{\sum_{n=1}^{N} M_{n}\right\}_{N}$ is bounded in \mathcal{R}, then the series $\sum_{n=1}^{\infty} f_{n}$ converges in X. (Recall that for the series converge, we just mean that the sequence of partial sums convergence as a sequence in X).

