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Defn. A collection of n + 1 distinct points of the interval [a, b
P={xy=a<n < - <zi1<z;<---<b=z,}

is called a partition of the interval. In this case, we define the norm of the partition
by
| P|| := max Auz;.

1<i<n

where Az, := x; — x;_1 is the length of the i-th subinterval [z; 1, z;].

Defn. For a given partition P, we define the Riemann upper sum of a function f
by

U(P, f) =3 M; Az,

n
i=1
where M; denotes the supremum of f over each of the subintervals [z;_1, x;]. Sim-

ilarly, we define the Riemann lower sum of a function f by

1

L(P, [) =

n
Z‘:

where m; denotes the infimum of f over each of the subintervals [z;_1,x;]. Since
m; < M;, we note that
L(P, f) U f).

for any partition P.

Defn. Suppose Py, P, are both partitions of [a, b], then P, is called a refinement of
Py, denoted by
P < P,

if as sets P, C P.

Note. If P, < P, it follows that || || < || ;]| since each of the subintervals formed
by P, is contained in a subinterval which arises from P;.

Lemma. If P, < P,, then
L(Py, f) < L(P, f).

and
U(P, f) SU(PL f).



Proof. Suppose first that P; is a partition of [a,b] and that P, is the partition
obtained from P; by adding an additional point z. The general case follows by
induction, adding one point at at time. In particular, we let

P1I:{CL‘O:CL<$1<"'<SCZ'_1<.CCZ'<"'<Z):ZZE”}

and
P={ryp=a<n< - --<zr1<z<z;<--<b=:x,}

for some fixed 7. We focus on the upper Riemann sum for these two partitions,
noting that the inequality for the lower sums follows similarly. Observe that

U(Pl, f) = Z Mj Al'j
7=1

and

i—1 - n
U(Pg,f) ::ZMJ'Al‘j+M(Z—ZEZ'_1)+M($Z‘—Z)+ Z Mijj
j=1 j=i+1

where M := supy,, , .1 f(z) and M = supy, . f(z). It then follows that U(P, f) <
U(P, f) since i
M, M < M, O

Defn. If P, and P, are arbitrary partitions of [a, b], then the common refinement
of P, and P, is the formal union of the two.

Corollary. Suppose P; and P, are arbitrary partitions of [a, b], then
L(Py, f) U, f).
Proof. Let P be the common refinement of P; and P,, then
L(P, f) < L(P ) U f) U(P f). O

Defn. The lower Riemann integral of f over [a,b] is defined to be

b
/ f(x)dx .= sup  L(P,f).
—a all partitions
P of [a,b]

Similarly, the upper Riemann integral of f over [a,b] is defined to be

/ f(x)dx .= _inf  U(P,f).

a all partitions
P of [a,b]



By the definitions of least upper bound and greatest lower bound, it is evident that
for any function f there holds

ij(x)da: < 7::]”(:15)035(:

Defn. A function f is Riemann integrable over |a, b] if the upper and lower Riemann
integrals coincide. We denote this common value by [° f(x) dx.

Examples: 1. [°kdx = k(b— a).
2. [l dr = L(b? — a?).
[Hint: Use X! ;i =n(n+1)/2.]

Theorem. A necessary and sufficient condition for f to be Riemann integrable is
given € > 0, there exists a partition P of [a, b] such that

(+) U(P,f) — L(P.f) < e
Proof. First we show that (*) is a sufficient condition. This follows immediately,
since for each € > 0 that there is a partition P such that (*) holds,

[ f@da = [ ahds < UP.1) - LPT) <

Since € > 0 was arbitrary, then the upper and lower Riemann integrals of f must
coincide.

To prove that (*) is a necessary condition for f to be Riemann integrable, we
let € > 0. By the definition of the upper Riemann integral as a infimum of upper
sums, we can find a partition P; of [a, b] such that

/f Yz < U(Py, f </f Ydz + €/2

Similarly, we have

/f Ydx —€/2 < L(Ps, f) </f dx.

Let P be a common refinement of P, and P, then subtracting the two previous
inequalities implies,

UP, f)—L(Pf) U, f) = L(P, f) <e. O

Defn. A Riemann sum for f for a partition P of an interval [a, b] is defined by

R(P.f.€) — z f(&) Az,



where the &, satisfying x;_1 < &; < x; (1 <j <n), are arbitrary.

Corollary. Suppose that f is Riemann integrable on [a, b], then there is a unique
number v ( = [2f(z)dx) such that for every ¢ > 0 there exists a partition P of
[a, b] such that if P < Py, P, then

i) 00U, f)—v<e
ii.) 0<y—L(P,f)<e
iii.) |y — R(Py, f,€)] <e¢

where R(Py, f,€) is any Riemann sum of f for the partition P;. In this sense, we
can interpret

[ f@)dz = lim R(P.f.).

1P[|—0

although we would actually need to show a little more to be entirely correct.
Proof. Since L(Ps, f) < v < U(Py, f) for all partitions, we see that parts i.) and
ii.) follow from the definition of the Riemann integral. To see part iii.), we observe
that m; < f(§;) < M; and hence that

L(P, f) < R(P, f,&) <U(P, f).
But we also know that both
L(P,f) <y < U, f)

and condition (*) hold, from which part iii.) follows. O



Theorem. If f is continuous on [a, b], then f is Riemann-integrable on |a, b].
Proof. We use the condition (*) to prove that f is Riemann-integrable. If € > 0,
we set €y := €/(b — a). Since f is continuous on [a,b], f is uniformly continuous.
Hence there is a § > 0 such that |f(y) — f(x)| < € if |y — x| < §. Suppose that
|P|| < 6, then it follows that |M; — m;| < ¢ (1 <i<n). Hence

U(P,f) —L(P,f) = Z(MZ—mZ)Aa:Z < Eo(b—a) =€ 0O

1=1

Theorem. If f is monotone on [a,b], then f is Riemann-integrable on [a, b].
Proof. If f is constant, then we are done. We prove the case for f monotone increas-
ing. The case for monotone decreasing is similiar. We again use the condition (*)
to prove that f is Riemann-integrable. If € > 0, we set ¢ := ¢/(f(b) — f(a)) and
consider any partition P with ||P|| < d. Since f is monotone increasing on [a, b],
then M; = f(z;) and m; = f(x;_1). Hence

n

=1
n

= > (f(zi) — f(zi1)) Az

| Pl é(f(%) — f(xi1))
< 0(f(b) = fla)) = ¢ O

<

Theorem. (Properties of the Riemann Integral) Suppose that f and g are Riemann
integrable and £ is a real number, then

L) Pk fle)de =k [0 f(x)dx

i) 0f+gdr=[0fdx+ [Pgdx
iii.) g < f implies [*gdx < [? f dw.
iv.) |Jo fda| < J71f| de

Proof. To prove part i.), we observe that in case k > 0, then supy,, | .1k f(x) = kM,
and inf,, | 1 kf(z) = km;. Hence U(P,kf) = kU(P, f) and L(P,kf) = kL(P, f).
In the case that k < 0, then supy,, , . kf(x) = km; and inf,, . 1kf(x) = kM;. It
follows in this case that U(P, kf) = kL(P, f) and L(P,kf) = kU (P, f) and so

—b

/.,

k f(x)de = k:l;f(x)dx



f’k f(z)de = k 7:f(a:)d:c.

To prove property ii.) we notice that sup;(f + g) < sup; f +sup; g and inf; f +
inf; g <inf;(f + g) for any interval I (for example, I = [z;_1, z;]). Hence,

(1) L(P,f)+L(Pg) < L(P,f+9) SU(P f+g) <UP, )+ U(P,g).

Let € > 0, then since f and g are Riemann integrable, there exist partitions P, P
such that

(2) U(Py, f) = L(P, f) <€/2, U(P,g) — L(P,g) < ¢€/2.

If we let P be a common refinement of P, and P, then by combining inequalities (1)
and (2), we see that see that

< U(Plaf)_L(Plyf) + U(P27g)_L(P27g)
<

€/2 + €¢/2=e.

Property iii.) follows directly from the definition of the upper and lower integrals
using, for example, the inequality sup; g(x) < sup; f(x).
Property iv.) is proved by applying property iii.) to the inequality

—lfI < f=<Ifl
from which it follows that — [0 |f| dx < [° fdx < [°|f| dz. But this inequality
implies property iv.). O

Defn. We extend the definition of the integral to include general limits of integra-
tion. These are consistent with our earlier definition.

L. J2 f(x) dx = 0.
2. 2 flx)dx = — [? f(z) du.

Theorem. If f is Riemann integrable on [a,b], then it is Riemann integrable on
each subinterval [c, d] C [a,b]. Moreover, if ¢ € [a, b], then

(3) [ f@)de = [ fa)do+ [ f(a) da.

Proof. We show first that condition (*) holds for the interval [c, d]. Suppose € > 0,
then by (*) applied to f over the interval [a, b], we have that there exists a partition
P of [a, b] such that condition (*) holds. Let P be the refinement obtained from P



which contains the points c and d. Let P* be the partition obtained by restricting
the partition P to the interval [c, d], then

U(P*af)_L(P*7f)SU(paf)_L(Paf)SU(Paf)_L(Paf)<€

and so f is Riemann integrable over [c, d].

To prove the identity (3), we use the fact that condition (*) holds when f is
Riemann integrable. Let ¢ > 0, then for ¢/3 > 0, we may apply (*) to each of
the intervals I = [a,b], [a, c] and [c, b], respectively, to obtain partitions P; which
satisty

(4) 0 <Ui(Py, f) = | fde <ULPL, f) = Li(Pr, ) < /3.

We let P be the partition of |a,b] formed by the union of the two partitions
P, Py, and P be the common refinement of P and P_,;. Observing that

(5) Ua)(P, f) = Ui (Pr, f) + Uy (Po, f),
we can combine with inequality (4) to obtain
‘fcffd$ + fcbf dx — fc?f dx’ S ‘U[a,c](p7f) - facfdx‘ + ‘U[c,b](pu f) - fé)fdx)

+)U[a,b](p7 f) _fc?fdx‘
< ey = €.

Since € > 0 was arbitrary, then equality (3) must hold. O

Theorem. (Intermediate Value Theorem for Integrals) If f is continuous on [a, b),
then there exists £ between a and b such that

[ (@) dz = £)(b— a).
fclffdx

—a

Proof. Since f is continuous on [a, b] and for n := there holds

min f(w) <7 < r[nabff(ﬂf),

then by the Intermediate Value Theorem for continuous functions, there exists a
¢ € [a,b] such that f(§) =n. O

Theorem. (Fundamental Theorem of Calculus, I. Derivative of an Integral) Sup-
pose that f is continuous on [a, b] and set F'(x) := [ f(y)dy, then F is differentiable
and F'(z) = f(x) for a <z < b,



Proof. Notice that

F(xo+h) = F(zo)  Jo*" fdo
n = =1

for some & between xy and xy + h. Hence, as h — 0, then £ = &, converges to x
and so the displayed difference quotient has a limit of f(x¢) as h — 0. O

Theorem. (Fundamental Theorem of Calculus, Part II. Integral of a Derivative)
Suppose that F' is function with a continuous derivative on |a, b], then

r=a

[ Fly) dy = F@)=) = F(6) - F(a)

Proof. Define G(x) := [T F'(y) dy, and set H := F — G. Since the derivative of H is
identically zero by Part I of the Fundamental Theorem of Calculus, then the Mean
Value Theorem implies that H(b) = H(a). Expressing this in terms of F' and G
gives

b
F(b) = [ F'(y) dy = F(a),
which establishes the theorem. O



