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Defn. A collection of n+ 1 distinct points of the interval [a, b]

P := {x0 = a < x1 < · · · < xi−1 < xi < · · · < b =: xn}

is called a partition of the interval. In this case, we define the norm of the partition
by

‖P‖ := max
1≤i≤n

∆xi.

where ∆xi := xi − xi−1 is the length of the i-th subinterval [xi−1, xi].

Defn. For a given partition P , we define the Riemann upper sum of a function f

by

U(P, f) :=
n∑
i=1

Mi ∆xi

where Mi denotes the supremum of f over each of the subintervals [xi−1, xi]. Sim-
ilarly, we define the Riemann lower sum of a function f by

L(P, f) :=
n∑
i=1

mi ∆xi

where mi denotes the infimum of f over each of the subintervals [xi−1, xi]. Since
mi ≤Mi, we note that

L(P, f) ≤ U(P, f).

for any partition P .

Defn. Suppose P1, P2 are both partitions of [a, b], then P2 is called a refinement of
P1, denoted by

P1 ≺ P2,

if as sets P1 ⊆ P2.

Note. If P1 ≺ P2, it follows that ‖P2‖ ≤ ‖P1‖ since each of the subintervals formed
by P2 is contained in a subinterval which arises from P1.

Lemma. If P1 ≺ P2, then
L(P1, f) ≤ L(P2, f).

and
U(P2, f) ≤ U(P1, f).



Proof. Suppose first that P1 is a partition of [a, b] and that P2 is the partition
obtained from P1 by adding an additional point z. The general case follows by
induction, adding one point at at time. In particular, we let

P1 := {x0 = a < x1 < · · · < xi−1 < xi < · · · < b =: xn}

and
P2 := {x0 = a < x1 < · · · < xi−1 < z < xi < · · · < b =: xn}

for some fixed i. We focus on the upper Riemann sum for these two partitions,
noting that the inequality for the lower sums follows similarly. Observe that

U(P1, f) :=
n∑
j=1

Mj ∆xj

and

U(P2, f) :=
i−1∑
j=1

Mj ∆xj +M(z − xi−1) + M̃(xi − z) +
n∑

j=i+1
Mj ∆xj

where M := sup[xi−1,z] f(x) and M̃ := sup[z,xi] f(x). It then follows that U(P2, f) ≤
U(P1, f) since

M, M̃ ≤Mi. 2

Defn. If P1 and P2 are arbitrary partitions of [a, b], then the common refinement
of P1 and P2 is the formal union of the two.

Corollary. Suppose P1 and P2 are arbitrary partitions of [a, b], then

L(P1, f) ≤ U(P2, f).

Proof. Let P be the common refinement of P1 and P2, then

L(P1, f) ≤ L(P, f) ≤ U(P, f) ≤ U(P2, f). 2

Defn. The lower Riemann integral of f over [a, b] is defined to be∫ b

a
f(x)dx := sup

all partitions
P of [a,b]

L(P, f).

Similarly, the upper Riemann integral of f over [a, b] is defined to be

∫ b

a
f(x)dx := inf

all partitions
P of [a,b]

U(P, f).



By the definitions of least upper bound and greatest lower bound, it is evident that
for any function f there holds∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx.

Defn. A function f is Riemann integrable over [a, b] if the upper and lower Riemann
integrals coincide. We denote this common value by

∫ b
a f(x) dx.

Examples: 1.
∫ b
a k dx = k(b− a).

2.
∫ b
a x dx = 1

2(b2 − a2).

[Hint: Use
∑n
i=1 i = n(n+ 1)/2.]

Theorem. A necessary and sufficient condition for f to be Riemann integrable is
given ε > 0, there exists a partition P of [a, b] such that

(∗) U(P, f)− L(P, f) < ε.

Proof. First we show that (*) is a sufficient condition. This follows immediately,
since for each ε > 0 that there is a partition P such that (*) holds,∫ b

a
f(x)dx−

∫ b

a
f(x)dx ≤ U(P, f)− L(P, f) < ε.

Since ε > 0 was arbitrary, then the upper and lower Riemann integrals of f must
coincide.

To prove that (*) is a necessary condition for f to be Riemann integrable, we
let ε > 0. By the definition of the upper Riemann integral as a infimum of upper
sums, we can find a partition P1 of [a, b] such that∫ b

a
f(x)dx ≤ U(P1, f) <

∫ b

a
f(x)dx+ ε/2

Similarly, we have ∫ b

a
f(x)dx− ε/2 < L(P2, f) ≤

∫ b

a
f(x)dx.

Let P be a common refinement of P1 and P2, then subtracting the two previous
inequalities implies,

U(P, f)− L(P, f) ≤ U(P1, f)− L(P2, f) < ε. 2

Defn. A Riemann sum for f for a partition P of an interval [a, b] is defined by

R(P, f, ξ) :=
n∑
j=1

f(ξj)∆xj



where the ξj, satisfying xj−1 ≤ ξj ≤ xj (1 ≤ j ≤ n), are arbitrary.

Corollary. Suppose that f is Riemann integrable on [a, b], then there is a unique
number γ ( =

∫ b
af(x)dx) such that for every ε > 0 there exists a partition P of

[a, b] such that if P ≺ P1, P2, then

i.) 0 ≤ U(P1, f)− γ < ε

ii.) 0 ≤ γ − L(P2, f) < ε

iii.) |γ −R(P1, f, ξ)| < ε

where R(P1, f, ξ) is any Riemann sum of f for the partition P1. In this sense, we
can interpret ∫ b

a
f(x)dx = lim

‖P‖→0
R(P, f, ξ).

although we would actually need to show a little more to be entirely correct.
Proof. Since L(P2, f) ≤ γ ≤ U(P1, f) for all partitions, we see that parts i.) and
ii.) follow from the definition of the Riemann integral. To see part iii.), we observe
that mj ≤ f(ξj) ≤Mj and hence that

L(P1, f) ≤ R(P1, f, ξ) ≤ U(P1, f).

But we also know that both

L(P1, f) ≤ γ ≤ U(P1, f)

and condition (*) hold, from which part iii.) follows. 2



Theorem. If f is continuous on [a, b], then f is Riemann-integrable on [a, b].
Proof. We use the condition (*) to prove that f is Riemann-integrable. If ε > 0,
we set ε0 := ε/(b − a). Since f is continuous on [a, b], f is uniformly continuous.
Hence there is a δ > 0 such that |f(y) − f(x)| < ε0 if |y − x| < δ. Suppose that
‖P‖ < δ, then it follows that |Mi −mi| ≤ ε0 (1 ≤ i ≤ n). Hence

U(P, f)− L(P, f) =
n∑
i=1

(Mi −mi)∆xi ≤ ε0(b− a) = ε. 2

Theorem. If f is monotone on [a, b], then f is Riemann-integrable on [a, b].
Proof. If f is constant, then we are done. We prove the case for f monotone increas-
ing. The case for monotone decreasing is similiar. We again use the condition (*)
to prove that f is Riemann-integrable. If ε > 0, we set δ := ε/(f(b) − f(a)) and
consider any partition P with ‖P‖ < δ. Since f is monotone increasing on [a, b],
then Mi = f(xi) and mi = f(xi−1). Hence

U(P, f)− L(P, f) =
n∑
i=1

(Mi −mi)∆xi

=
n∑
i=1

(f(xi)− f(xi−1))∆xi

≤ ‖P‖
n∑
i=1

(f(xi)− f(xi−1))

< δ (f(b)− f(a)) = ε. 2

Theorem. (Properties of the Riemann Integral) Suppose that f and g are Riemann
integrable and k is a real number, then

i.)
∫ b
a k f(x) dx = k

∫ b
a f(x) dx

ii.)
∫ b
a f + g dx =

∫ b
a f dx+

∫ b
a g dx

iii.) g ≤ f implies
∫ b
a g dx ≤

∫ b
a f dx.

iv.) | ∫ ba f dx| ≤ ∫ b
a |f | dx

Proof. To prove part i.), we observe that in case k ≥ 0, then sup[xi−1,xi]kf(x) = kMi

and inf[xi−1,xi] kf(x) = kmi. Hence U(P, kf) = kU(P, f) and L(P, kf) = kL(P, f).
In the case that k < 0, then sup[xi−1,xi] kf(x) = kmi and inf[xi−1,xi] kf(x) = kMi. It
follows in this case that U(P, kf) = kL(P, f) and L(P, kf) = kU(P, f) and so

∫ b

a
k f(x)dx = k

∫ b

a
f(x)dx



∫ b

a
k f(x)dx = k

∫ b

a
f(x)dx.

To prove property ii.) we notice that supI(f + g) ≤ supI f + supI g and infI f +
infI g ≤ infI(f + g) for any interval I (for example, I = [xi−1, xi]). Hence,

(1) L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g).

Let ε > 0, then since f and g are Riemann integrable, there exist partitions P1, P2

such that

(2) U(P1, f)− L(P1, f) < ε/2, U(P2, g)− L(P2, g) < ε/2.

If we let P be a common refinement of P1 and P2, then by combining inequalities (1)
and (2), we see that see that

U(P, f + g)− L(P, f + g) ≤ U(P, f)− L(P, f) + U(P, g)− L(P, g)
≤ U(P1, f)− L(P1, f) + U(P2, g)− L(P2, g)
≤ ε/2 + ε/2 = ε.

Property iii.) follows directly from the definition of the upper and lower integrals
using, for example, the inequality supI g(x) ≤ supI f(x).

Property iv.) is proved by applying property iii.) to the inequality

−|f | ≤ f ≤ |f |,

from which it follows that − ∫ b
a |f | dx ≤

∫ b
a f dx ≤

∫ b
a |f | dx. But this inequality

implies property iv.). 2

Defn. We extend the definition of the integral to include general limits of integra-
tion. These are consistent with our earlier definition.

1.
∫ a
a f(x) dx = 0.

2.
∫ a
b f(x) dx = − ∫ b

a f(x) dx.

Theorem. If f is Riemann integrable on [a, b], then it is Riemann integrable on
each subinterval [c, d] ⊆ [a, b]. Moreover, if c ∈ [a, b], then

(3)
∫ b
a
f(x) dx =

∫ c
a
f(x) dx+

∫ b
c
f(x) dx.

Proof. We show first that condition (*) holds for the interval [c, d]. Suppose ε > 0,
then by (*) applied to f over the interval [a, b], we have that there exists a partition
P of [a, b] such that condition (*) holds. Let P̃ be the refinement obtained from P



which contains the points c and d. Let P ∗ be the partition obtained by restricting
the partition P̃ to the interval [c, d], then

U(P ∗, f)− L(P ∗, f) ≤ U(P̃ , f)− L(P̃ , f) ≤ U(P, f)− L(P, f) < ε

and so f is Riemann integrable over [c, d].
To prove the identity (3), we use the fact that condition (*) holds when f is

Riemann integrable. Let ε > 0, then for ε/3 > 0, we may apply (*) to each of
the intervals I = [a, b], [a, c] and [c, b], respectively, to obtain partitions PI which
satisfy

(4) 0 ≤ UI(PI , f)−
∫
I
f dx ≤ UI(PI , f)− LI(PI , f) < ε/3.

We let P be the partition of [a, b] formed by the union of the two partitions
P[a,c], P[c,b], and P̃ be the common refinement of P and P[a,b]. Observing that

(5) U[a,b](P̃ , f) = U[a,c](P̃1, f) + U[c,b](P̃2, f),

we can combine with inequality (4) to obtain∣∣∣∫ ca f dx+
∫ b
c f dx−

∫ b
a f dx

∣∣∣ ≤ ∣∣∣U[a,c](P̃ , f)− ∫ c
a f dx

∣∣∣ + ∣∣∣U[c,b](P̃ , f)− ∫ b
c f dx

∣∣∣
+
∣∣∣U[a,b](P̃ , f)− ∫ b

a f dx
∣∣∣

< 3ε0 = ε.

Since ε > 0 was arbitrary, then equality (3) must hold. 2

Theorem. (Intermediate Value Theorem for Integrals) If f is continuous on [a, b],
then there exists ξ between a and b such that∫ b

a
f(x) dx = f(ξ)(b− a).

Proof. Since f is continuous on [a, b] and for η :=

∫ b
a f dx

b− a
there holds

min
[a,b]

f(x) ≤ η ≤ max
[a,b]

f(x),

then by the Intermediate Value Theorem for continuous functions, there exists a
ξ ∈ [a, b] such that f(ξ) = η. 2

Theorem. (Fundamental Theorem of Calculus, I. Derivative of an Integral) Sup-
pose that f is continuous on [a, b] and set F (x) :=

∫ x
a f(y)dy, then F is differentiable

and F ′(x) = f(x) for a < x < b.



Proof. Notice that

F (x0 + h)− F (x0)

h
=

∫ x0+h
x0

f dx

h
= f(ξ)

for some ξ between x0 and x0 + h. Hence, as h → 0, then ξ = ξh converges to x0

and so the displayed difference quotient has a limit of f(x0) as h→ 0. 2

Theorem. (Fundamental Theorem of Calculus, Part II. Integral of a Derivative)
Suppose that F is function with a continuous derivative on [a, b], then

∫ b
a
F ′(y) dy = F (x)|x=b

x=a := F (b)− F (a)

.
Proof. Define G(x) :=

∫ x
a F

′(y)dy, and set H := F −G. Since the derivative of H is
identically zero by Part I of the Fundamental Theorem of Calculus, then the Mean
Value Theorem implies that H(b) = H(a). Expressing this in terms of F and G

gives

F (b)−
∫ b
a
F ′(y) dy = F (a),

which establishes the theorem. 2


