Math 554 - Integration
 Handout \#9 - 4/12/96

Defn. A collection of $n+1$ distinct points of the interval $[a, b]$

$$
P:=\left\{x_{0}=a<x_{1}<\cdots<x_{i-1}<x_{i}<\cdots<b=: x_{n}\right\}
$$

is called a partition of the interval. In this case, we define the norm of the partition by

$$
\|P\|:=\max _{1 \leq i \leq n} \Delta x_{i} .
$$

where $\Delta x_{i}:=x_{i}-x_{i-1}$ is the length of the i-th subinterval $\left[x_{i-1}, x_{i}\right]$.
Defn. For a given partition P, we define the Riemann upper sum of a function f by

$$
U(P, f):=\sum_{i=1}^{n} M_{i} \Delta x_{i}
$$

where M_{i} denotes the supremum of f over each of the subintervals $\left[x_{i-1}, x_{i}\right]$. Similarly, we define the Riemann lower sum of a function f by

$$
L(P, f):=\sum_{i=1}^{n} m_{i} \Delta x_{i}
$$

where m_{i} denotes the infimum of f over each of the subintervals $\left[x_{i-1}, x_{i}\right]$. Since $m_{i} \leq M_{i}$, we note that

$$
L(P, f) \leq U(P, f)
$$

for any partition P.
Defn. Suppose P_{1}, P_{2} are both partitions of $[a, b]$, then P_{2} is called a refinement of P_{1}, denoted by

$$
P_{1} \prec P_{2},
$$

if as sets $P_{1} \subseteq P_{2}$.
Note. If $P_{1} \prec P_{2}$, it follows that $\left\|P_{2}\right\| \leq\left\|P_{1}\right\|$ since each of the subintervals formed by P_{2} is contained in a subinterval which arises from P_{1}.

Lemma. If $P_{1} \prec P_{2}$, then

$$
L\left(P_{1}, f\right) \leq L\left(P_{2}, f\right) .
$$

and

$$
U\left(P_{2}, f\right) \leq U\left(P_{1}, f\right) .
$$

Proof. Suppose first that P_{1} is a partition of $[a, b]$ and that P_{2} is the partition obtained from P_{1} by adding an additional point z. The general case follows by induction, adding one point at at time. In particular, we let

$$
P_{1}:=\left\{x_{0}=a<x_{1}<\cdots<x_{i-1}<x_{i}<\cdots<b=: x_{n}\right\}
$$

and

$$
P_{2}:=\left\{x_{0}=a<x_{1}<\cdots<x_{i-1}<z<x_{i}<\cdots<b=: x_{n}\right\}
$$

for some fixed i. We focus on the upper Riemann sum for these two partitions, noting that the inequality for the lower sums follows similarly. Observe that

$$
U\left(P_{1}, f\right):=\sum_{j=1}^{n} M_{j} \Delta x_{j}
$$

and

$$
U\left(P_{2}, f\right):=\sum_{j=1}^{i-1} M_{j} \Delta x_{j}+M\left(z-x_{i-1}\right)+\tilde{M}\left(x_{i}-z\right)+\sum_{j=i+1}^{n} M_{j} \Delta x_{j}
$$

where $M:=\sup _{\left[x_{i-1}, z\right]} f(x)$ and $\tilde{M}:=\sup _{\left[z, x_{i}\right]} f(x)$. It then follows that $U\left(P_{2}, f\right) \leq$ $U\left(P_{1}, f\right)$ since

$$
M, \tilde{M} \leq M_{i} .
$$

Defn. If P_{1} and P_{2} are arbitrary partitions of $[a, b]$, then the common refinement of P_{1} and P_{2} is the formal union of the two.

Corollary. Suppose P_{1} and P_{2} are arbitrary partitions of $[a, b]$, then

$$
L\left(P_{1}, f\right) \leq U\left(P_{2}, f\right) .
$$

Proof. Let P be the common refinement of P_{1} and P_{2}, then

$$
L\left(P_{1}, f\right) \leq L(P, f) \leq U(P, f) \leq U\left(P_{2}, f\right)
$$

Defn. The lower Riemann integral of f over $[a, b]$ is defined to be

$$
\int_{a}^{b} f(x) d x:=\sup _{\substack{\text { all paptitions } \\ \mathrm{P} \text { of }[\mathrm{a}, b]}} L(P, f) .
$$

Similarly, the upper Riemann integral of f over $[a, b]$ is defined to be

$$
\int_{a}^{b} f(x) d x:=\inf _{\substack{\text { all partitions } \\ \text { P of }[a, b]}} U(P, f) .
$$

By the definitions of least upper bound and greatest lower bound, it is evident that for any function f there holds

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} f(x) d x
$$

Defn. A function f is Riemann integrable over $[a, b]$ if the upper and lower Riemann integrals coincide. We denote this common value by $\int_{a}^{b} f(x) d x$.

Examples: 1. $\int_{a}^{b} k d x=k(b-a)$.

$$
\begin{aligned}
& \text { 2. } \int_{a}^{b} x d x=\frac{1}{2}\left(b^{2}-a^{2}\right) . \\
& \text { [Hint: Use } \left.\sum_{i=1}^{n} i=n(n+1) / 2 .\right]
\end{aligned}
$$

Theorem. A necessary and sufficient condition for f to be Riemann integrable is given $\epsilon>0$, there exists a partition P of $[a, b]$ such that

$$
\begin{equation*}
U(P, f)-L(P, f)<\epsilon . \tag{*}
\end{equation*}
$$

Proof. First we show that $\left(^{*}\right)$ is a sufficient condition. This follows immediately, since for each $\epsilon>0$ that there is a partition P such that $\left(^{*}\right)$ holds,

$$
\int_{a}^{b} f(x) d x-\int_{a}^{b} f(x) d x \leq U(P, f)-L(P, f)<\epsilon .
$$

Since $\epsilon>0$ was arbitrary, then the upper and lower Riemann integrals of f must coincide.

To prove that $\left(^{*}\right)$ is a necessary condition for f to be Riemann integrable, we let $\epsilon>0$. By the definition of the upper Riemann integral as a infimum of upper sums, we can find a partition P_{1} of $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x \leq U\left(P_{1}, f\right)<\int_{a}^{b} f(x) d x+\epsilon / 2
$$

Similarly, we have

$$
\int_{a}^{b} f(x) d x-\epsilon / 2<L\left(P_{2}, f\right) \leq \int_{a}^{b} f(x) d x .
$$

Let P be a common refinement of P_{1} and P_{2}, then subtracting the two previous inequalities implies,

$$
U(P, f)-L(P, f) \leq U\left(P_{1}, f\right)-L\left(P_{2}, f\right)<\epsilon .
$$

Defn. A Riemann sum for f for a partition P of an interval $[a, b]$ is defined by

$$
R(P, f, \boldsymbol{\xi}):=\sum_{j=1}^{n} f\left(\xi_{j}\right) \Delta x_{j}
$$

where the ξ_{j}, satisfying $x_{j-1} \leq \xi_{j} \leq x_{j}(1 \leq j \leq n)$, are arbitrary.
Corollary. Suppose that f is Riemann integrable on $[a, b]$, then there is a unique number $\gamma\left(=\int_{a}^{b} f(x) d x\right)$ such that for every $\epsilon>0$ there exists a partition P of $[a, b]$ such that if $P \prec P_{1}, P_{2}$, then
i.) $0 \leq U\left(P_{1}, f\right)-\gamma<\epsilon$
ii.) $0 \leq \gamma-L\left(P_{2}, f\right)<\epsilon$
iii.) $\left|\gamma-R\left(P_{1}, f, \boldsymbol{\xi}\right)\right|<\epsilon$
where $R\left(P_{1}, f, \boldsymbol{\xi}\right)$ is any Riemann sum of f for the partition P_{1}. In this sense, we can interpret

$$
\int_{a}^{b} f(x) d x=\lim _{\|P\| \rightarrow 0} R(P, f, \boldsymbol{\xi}) .
$$

although we would actually need to show a little more to be entirely correct. Proof. Since $L\left(P_{2}, f\right) \leq \gamma \leq U\left(P_{1}, f\right)$ for all partitions, we see that parts i.) and ii.) follow from the definition of the Riemann integral. To see part iii.), we observe that $m_{j} \leq f\left(\xi_{j}\right) \leq M_{j}$ and hence that

$$
L\left(P_{1}, f\right) \leq R\left(P_{1}, f, \boldsymbol{\xi}\right) \leq U\left(P_{1}, f\right)
$$

But we also know that both

$$
L\left(P_{1}, f\right) \leq \gamma \leq U\left(P_{1}, f\right)
$$

and condition $\left({ }^{*}\right)$ hold, from which part iii.) follows.

Theorem. If f is continuous on $[a, b]$, then f is Riemann-integrable on $[a, b]$.
Proof. We use the condition $\left(^{*}\right)$ to prove that f is Riemann-integrable. If $\epsilon>0$, we set $\epsilon_{0}:=\epsilon /(b-a)$. Since f is continuous on $[a, b], f$ is uniformly continuous. Hence there is a $\delta>0$ such that $|f(y)-f(x)|<\epsilon_{0}$ if $|y-x|<\delta$. Suppose that $\|P\|<\delta$, then it follows that $\left|M_{i}-m_{i}\right| \leq \epsilon_{0} \quad(1 \leq i \leq n)$. Hence

$$
U(P, f)-L(P, f)=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i} \leq \epsilon_{0}(b-a)=\epsilon
$$

Theorem. If f is monotone on $[a, b]$, then f is Riemann-integrable on $[a, b]$.
Proof. If f is constant, then we are done. We prove the case for f monotone increasing. The case for monotone decreasing is similiar. We again use the condition (*) to prove that f is Riemann-integrable. If $\epsilon>0$, we set $\delta:=\epsilon /(f(b)-f(a))$ and consider any partition P with $\|P\|<\delta$. Since f is monotone increasing on $[a, b]$, then $M_{i}=f\left(x_{i}\right)$ and $m_{i}=f\left(x_{i-1}\right)$. Hence

$$
\begin{aligned}
U(P, f)-L(P, f) & =\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Delta x_{i} \\
& =\sum_{i=1}^{n=1}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \Delta x_{i} \\
& \leq\|P\| \sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \\
& <\delta(f(b)-f(a))=\epsilon
\end{aligned}
$$

Theorem. (Properties of the Riemann Integral) Suppose that f and g are Riemann integrable and k is a real number, then
i.) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
ii.) $\int_{a}^{b} f+g d x=\int_{a}^{b} f d x+\int_{a}^{b} g d x$
iii.) $g \leq f$ implies $\int_{a}^{b} g d x \leq \int_{a}^{b} f d x$.
iv.) $\left|\int_{a}^{b} f d x\right| \leq \int_{a}^{b}|f| d x$

Proof. To prove part i.), we observe that in case $k \geq 0$, then $\sup _{\left[x_{i-1}, x_{i}\right]} k f(x)=k M_{i}$ and $\operatorname{in} f_{\left[x_{i-1}, x_{i}\right]} k f(x)=k m_{i}$. Hence $U(P, k f)=k U(P, f)$ and $L(P, k f)=k L(P, f)$. In the case that $k<0$, then $\sup _{\left[x_{i-1}, x_{i}\right]} k f(x)=k m_{i}$ and $\operatorname{in} f_{\left[x_{i-1}, x_{i}\right]} k f(x)=k M_{i}$. It follows in this case that $U(P, k f)=k L(P, f)$ and $L(P, k f)=k U(P, f)$ and so

$$
\bar{\int}_{a}^{b} k f(x) d x=k \underline{\int}_{a}^{b} f(x) d x
$$

$$
\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x
$$

To prove property ii.) we notice that $\sup _{I}(f+g) \leq \sup _{I} f+\sup _{I} g$ and $\inf _{I} f+$ $\inf _{I} g \leq \inf _{I}(f+g)$ for any interval I (for example, $I=\left[x_{i-1}, x_{i}\right]$). Hence,

$$
\begin{equation*}
L(P, f)+L(P, g) \leq L(P, f+g) \leq U(P, f+g) \leq U(P, f)+U(P, g) \tag{1}
\end{equation*}
$$

Let $\epsilon>0$, then since f and g are Riemann integrable, there exist partitions P_{1}, P_{2} such that

$$
\begin{equation*}
U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\epsilon / 2, \quad U\left(P_{2}, g\right)-L\left(P_{2}, g\right)<\epsilon / 2 . \tag{2}
\end{equation*}
$$

If we let P be a common refinement of P_{1} and P_{2}, then by combining inequalities (1) and (2), we see that see that

$$
\begin{aligned}
U(P, f+g)-L(P, f+g) & \leq U(P, f)-L(P, f)+U(P, g)-L(P, g) \\
& \leq U\left(P_{1}, f\right)-L\left(P_{1}, f\right)+U\left(P_{2}, g\right)-L\left(P_{2}, g\right) \\
& \leq \epsilon / 2+\epsilon / 2=\epsilon .
\end{aligned}
$$

Property iii.) follows directly from the definition of the upper and lower integrals using, for example, the inequality $\sup _{I} g(x) \leq \sup _{I} f(x)$.

Property iv.) is proved by applying property iii.) to the inequality

$$
-|f| \leq f \leq|f|,
$$

from which it follows that $-\int_{a}^{b}|f| d x \leq \int_{a}^{b} f d x \leq \int_{a}^{b}|f| d x$. But this inequality implies property iv.).

Defn. We extend the definition of the integral to include general limits of integration. These are consistent with our earlier definition.

1. $\int_{a}^{a} f(x) d x=0$.
2. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$.

Theorem. If f is Riemann integrable on $[a, b]$, then it is Riemann integrable on each subinterval $[c, d] \subseteq[a, b]$. Moreover, if $c \in[a, b]$, then

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \tag{3}
\end{equation*}
$$

Proof. We show first that condition $\left(^{*}\right)$ holds for the interval $[c, d]$. Suppose $\epsilon>0$, then by $(*)$ applied to f over the interval $[a, b]$, we have that there exists a partition P of $[a, b]$ such that condition $\left(^{*}\right)$ holds. Let \tilde{P} be the refinement obtained from P
which contains the points c and d. Let P^{*} be the partition obtained by restricting the partition \tilde{P} to the interval $[c, d]$, then

$$
U\left(P^{*}, f\right)-L\left(P^{*}, f\right) \leq U(\tilde{P}, f)-L(\tilde{P}, f) \leq U(P, f)-L(P, f)<\epsilon
$$

and so f is Riemann integrable over $[c, d]$.
To prove the identity (3), we use the fact that condition $\left({ }^{*}\right)$ holds when f is Riemann integrable. Let $\epsilon>0$, then for $\epsilon / 3>0$, we may apply $\left({ }^{*}\right)$ to each of the intervals $I=[a, b],[a, c]$ and $[c, b]$, respectively, to obtain partitions P_{I} which satisfy

$$
\begin{equation*}
0 \leq U_{I}\left(P_{I}, f\right)-\int_{I} f d x \leq U_{I}\left(P_{I}, f\right)-L_{I}\left(P_{I}, f\right)<\epsilon / 3 \tag{4}
\end{equation*}
$$

We let P be the partition of $[a, b]$ formed by the union of the two partitions $P_{[a, c]}, P_{[c, b]}$, and \tilde{P} be the common refinement of P and $P_{[a, b]}$. Observing that

$$
\begin{equation*}
U_{[a, b]}(\tilde{P}, f)=U_{[a, c]}\left(\tilde{P}_{1}, f\right)+U_{[c, b]}\left(\tilde{P}_{2}, f\right), \tag{5}
\end{equation*}
$$

we can combine with inequality (4) to obtain

$$
\begin{aligned}
&\left|\int_{a}^{c} f d x+\int_{c}^{b} f d x-\int_{a}^{b} f d x\right| \leq\left|U_{[a, c]}(\tilde{P}, f)-\int_{a}^{c} f d x\right|+\left|U_{[c, b]}(\tilde{P}, f)-\int_{c}^{b} f d x\right| \\
&<3 \epsilon_{0}=\epsilon . \\
&+\left|U_{[a, b]}(\tilde{P}, f)-\int_{a}^{b} f d x\right|
\end{aligned}
$$

Since $\epsilon>0$ was arbitrary, then equality (3) must hold.
Theorem. (Intermediate Value Theorem for Integrals) If f is continuous on $[a, b]$, then there exists ξ between a and b such that

$$
\int_{a}^{b} f(x) d x=f(\xi)(b-a)
$$

Proof. Since f is continuous on $[a, b]$ and for $\eta:=\frac{\int_{a}^{b} f d x}{b-a}$ there holds

$$
\min _{[a, b]} f(x) \leq \eta \leq \max _{[a, b]} f(x),
$$

then by the Intermediate Value Theorem for continuous functions, there exists a $\xi \in[a, b]$ such that $f(\xi)=\eta$.

Theorem. (Fundamental Theorem of Calculus, I. Derivative of an Integral) Suppose that f is continuous on $[a, b]$ and set $F(x):=\int_{a}^{x} f(y) d y$, then F is differentiable and $F^{\prime}(x)=f(x)$ for $a<x<b$.

Proof. Notice that

$$
\frac{F\left(x_{0}+h\right)-F\left(x_{0}\right)}{h}=\frac{\int_{x_{0}+h}^{x_{0}+h} d x}{h}=f(\xi)
$$

for some ξ between x_{0} and $x_{0}+h$. Hence, as $h \rightarrow 0$, then $\xi=\xi_{h}$ converges to x_{0} and so the displayed difference quotient has a limit of $f\left(x_{0}\right)$ as $h \rightarrow 0$.

Theorem. (Fundamental Theorem of Calculus, Part II. Integral of a Derivative) Suppose that F is function with a continuous derivative on $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(y) d y=\left.F(x)\right|_{x=a} ^{x=b}:=F(b)-F(a)
$$

Proof. Define $G(x):=\int_{a}^{x} F^{\prime}(y) d y$, and set $H:=F-G$. Since the derivative of H is identically zero by Part I of the Fundamental Theorem of Calculus, then the Mean Value Theorem implies that $H(b)=H(a)$. Expressing this in terms of F and G gives

$$
F(b)-\int_{a}^{b} F^{\prime}(y) d y=F(a),
$$

which establishes the theorem.

