Connectedness

Handout \#7-3/20/96

Defn. A disconnection of a set A is two nonempty sets A_{1}, A_{2} whose disjoint union is A and each is open relative to A. A set is said to be connected if it does not have any disconnections.

Example. The set $\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$ is disconnected.
Theorem. Each interval (open, closed, half-open) I is a connected set.
Proof. Let A_{1}, A_{2} be a disconnection for I. Let $a_{j} \in A_{j}, j=1,2$. We may assume WLOG that $a_{1}<a_{2}$, otherwise relabel A_{1} and A_{2}. Consider $E_{1}:=\{x \in$ $\left.A_{1} \mid x \leq a_{2}\right\}$, then E_{1} is nonempty and bounded from above. Let $a:=\sup E_{1}$. But $a_{1} \leq a \leq a_{2}$ implies $a \in I$ since I is an interval. First note that by the lemma to the least upper bound property either $a \in A_{1}$ or a is a limit point of A_{1}. In either case, $a \in A_{1}$ since A_{1} is closed relative to I. Since A_{1} is also open relative to the interval I, then there is an $\epsilon>0$ so that $N_{\epsilon}(a) \in A_{1}$. But then $a+\epsilon / 2 \in A_{1}$ and is less than a_{2}, which contradicts that a is the sup of E_{1}.

Theorem. If A is a connected set, then A is an interval.
Proof. Otherwise, there would be $a_{1}<a<a_{2}$, with $a_{j} \in A$ and $a \notin A$. But then $\mathcal{O}_{1}:=(-\infty, a) \cap A$ and $\mathcal{O}_{2}:=(a, \infty) \cap A$ form a disconnection of A.

Note. Each open subset of \mathbb{R} is the countable disjoint union of open intervals. This is seen by looking at open components (maximal connected sets) and recalling that each open interval contains a rational. Relatively (with respect to $A \subseteq \mathbb{R}$) open sets are just restrictions of these.

Theorem. The continuous image of a connected set is connected. The continuous image of $[a, b]$ is an interval $[c, d]$ where $c=\min _{a \leq x \leq b} f(x)$ and $d=\max _{a \leq x \leq b} f(x)$.
Proof. Any disconnection of the image $f([a, b])$ can be 'drawn back' to form a disconnection of $[a, b]$: if $\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}$ forms a disconnection for $f(I)$, then $\left\{f^{-1}\left(\mathcal{O}_{1}\right), f^{-1}\left(\mathcal{O}_{2}\right)\right\}$ forms a disconnection for $I=[a, b]$.

Corollary. (Intermediate Value Theorem) Suppose f is a real-valued function which is continuous on an interval I. If $a_{1}, a_{2} \in I$ and y is a number between $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$, then there exists a between a_{1} and a_{2} such that $f(a)=y$. Proof. We may assume WLOG that $I=\left[a_{1}, a_{2}\right]$. We know that $f(I)$ is a closed
interval, say I_{1}. Any number y between $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$, belongs to I_{1} and so there is an $a \in\left[a_{1}, a_{2}\right]$ such that $f(a)=y$.

Theorem. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous, then f has a fixed point, i.e. there is an $\alpha \in[a, b]$ such that $f(\alpha)=\alpha$.

Proof. Consider the function $g(x):=x-f(x)$, then $g(a) \leq 0 \leq g(b)$. g is continuous on $[a, b]$, so by the Intermediate Value Theorem, there is an $\alpha \in[a, b]$ such that $g(\alpha)=0$. This implies that $f(\alpha)=\alpha$.

More on Compactness

Defn. A function f is called Lipschitz if there is an $M>0$ such that

$$
\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq M\left|x_{1}-x_{2}\right|, \text { for all } x_{1}, x_{2} \in \operatorname{dom}(f) .
$$

If $M<1$, then f is called a contraction.
Theorem. Each Lipschitz function is uniformly continuous.
Theorem. Suppose that K is compact and $f: K \rightarrow K$ is a contraction, then f has a fixed point in K.
Proof. Let x_{0} be an arbitrary point in K. Define inductively,

$$
x_{n+1}=f\left(x_{n}\right), \quad n=0,1,2, \ldots
$$

We claim that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is convergent to some $\alpha \in K$. First note that for each $n \in \mathbb{N}$

$$
\left|x_{n+1}-x_{n}\right|=\left|f\left(x_{n}\right)-f\left(x_{n-1}\right)\right| \leq M\left|x_{n}-x_{n-1}\right| .
$$

Hence, by induction, for each $n \in I N$

$$
\left|x_{n+1}-x_{n}\right| \leq M^{n}\left|x_{1}-x_{0}\right| .
$$

We then see that if $m>n$, then $m=n+k$ where $k \in \mathbb{N}$ and

$$
\begin{aligned}
\left|x_{n+k}-x_{n}\right| & \leq\left|x_{n+k}-x_{n+k-1}\right|+\left|x_{n+k-1}-x_{n+k-2}\right|+\ldots+\left|x_{n+1}-x_{n}\right| \\
& \leq\left(M^{n+k-1}+M^{n+k-2}+\ldots+M^{n}\right)\left|x_{1}-x_{0}\right| \\
& =M^{n}\left(1+M+\ldots+M^{k-1}\right)\left|x_{1}-x_{0}\right| \\
& \leq \frac{\left|x_{1}-x_{0}\right|}{1-M} M^{n}
\end{aligned}
$$

and so $\left\{x_{n}\right\}_{n=1}^{\infty}$ is Cauchy. It must converge to some limit α which will belong to K since K is closed. But f is continuous, so $x_{n+1}=f\left(x_{n}\right) \rightarrow f(\alpha)$. Notice also that $x_{n+1} \rightarrow \alpha$, so α is our fixed point.

Theorem. Suppose that $f:[a, b] \rightarrow K$ is one-to-one, onto and continuous, then f^{-1} is continuous.
Proof. (\#1) Suppose that $g:=f^{-1}$ and $y_{n} \rightarrow y_{0} \in K$. There exists unique $x_{n} \in[a, b]$ such that $f\left(x_{n}\right)=y_{n}$, or equivalently, $x_{n}=g\left(y_{n}\right)$. If $x_{n} \nrightarrow x_{0}$, then there exists $\epsilon_{0}>0$ and a subsequence $x_{n_{k}}$ such that $\left|x_{n_{k}}-x_{0}\right| \geq \epsilon_{0}$. This sequence in turn has a subsequence which converges in K to some $z \in K$. We may as well assume that
the subsequence is the sequence $\left\{x_{n_{k}}\right\} . f$ is continuous so $y_{n_{k}}=f\left(x_{n_{k}}\right) \rightarrow f(z)$. But then $f(z)=y_{0}=f\left(x_{0}\right) . f$ is one-to-one, so $z=x_{0}$, which is a contradiction, since $\left|x_{n_{k}}-x_{0}\right| \geq \epsilon_{0}$.
Proof. (\#2) Let $\mathcal{O} \subseteq[a, b]$ be relatively open, then $\left(f^{-1}\right)^{-1}(\mathcal{O})=f(\mathcal{O})$. Let C be the complement in $[a, b]$ of \mathcal{O}, then C is closed and hence compact. Therefore $f(C)$ is compact in K and conseqently it is closed. Its complement in K must then be open. That complement however is $f(\mathcal{O})$.

