Math 554
Handout \#5-2/19/96

Defn. A point x_{0} is called a limit point of a set A if each nbhd of x_{0} contains a member of A different from x_{0}, i.e. for each $\epsilon>0, \quad\left(N_{\epsilon}\left(x_{0}\right) \backslash\left\{x_{0}\right\}\right) \cap A \neq \emptyset$.

Defn. A point $x_{0} \in A$ is called an isolated point of A if x_{0} belongs to A but is not a limit point.

Theorem. A set F is closed if and only if it contains all its limit points.
Theorem. x_{0} is a limit point of a set A if and only if there exists a sequence $\left\{x_{n}\right\} \subseteq A$ such that $x_{n} \rightarrow x_{0}$, but $x_{n} \neq x_{0},(\forall n \in \mathbb{N})$.

Defn. Suppose that x_{0} is a limit point of the domain of a function f, then f is said to have a limit L as $x \rightarrow x_{0}$ if,

$$
\forall \epsilon>0, \exists \delta>0 \ni\left(x \in \operatorname{dom}(f) \& 0<\left|x-x_{0}\right|<\delta\right) \Longrightarrow|f(x)-L|<\epsilon
$$

In this case, we use the notation,

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Theorem. Suppose that $f: A \rightarrow B$ is a real-valued function of a real variable, i.e. $A, B \subseteq \mathbb{R}$. If x_{0} is a limit point of the domain of f, then TFAE (The Following Are Equivalent):
a.) $\lim _{x \rightarrow x_{0}} f(x)=L$,
b.) For every sequence $\left\{x_{n}\right\}$ in the domain of f, if $x_{n} \rightarrow x_{0}$, then $f\left(x_{n}\right) \rightarrow L$.

Defn. Suppose $A, B \subseteq \mathbb{R}$ and $f: A \rightarrow B$. If $x_{0} \in A$, then f is said to be continuous at x_{0} if either

1. x_{0} is an isolated point of A
or
2. $\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right)$.

Defn. Consider a set $B \subseteq \mathbb{R}$. A set $\tilde{O} \subseteq B$ is called open relative to B (or briefly, relatively open) if $\tilde{O}=\mathcal{O} \cap B$ for some open set $\mathcal{O} \subseteq \mathbb{R}$.

Theorem. Suppose that $f: A \rightarrow B$, where $A, B \subseteq \mathbb{R}$, then TFAE:
a.) f is continuous at each point of its domain,
b.) for each $x_{0} \in A$ and for every $\epsilon>0$, there is a $\delta>0$ such that whenever $\left|x-x_{0}\right|<\delta$, then $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$,
c.) if $x_{n} \rightarrow x_{0}$, then $f\left(x_{n}\right) \rightarrow f\left(x_{0}\right)$,
d.) if $f^{-1}[\mathcal{O}]$ is open for each open subset \mathcal{O} of B.

Corollary. The finite sum, product, or the quotient of continuous functions is each continuous on their respective domains.

Corollary. All polynomials are continuous. Rational functions are continuous on their domains.

Theorem. The composition of continuous functions is continuous.
Examples. Each of the following are examples of continuous functions:

1. $f(x):=|x|$
2. $g(x):=\sqrt{x}$
3. $F(x):=\sqrt{\frac{x^{2}-2 x+5}{x^{3}-1}}$

Homework \#7 (Due Friday, Feb. 23)

1. Suppose that x_{0} is a limit point of the domain of both f and g have limits at x_{0}, then prove that

$$
\lim _{x \rightarrow x_{0}}(f+g)(x)=\lim _{x \rightarrow x_{0}} f(x)+\lim _{x \rightarrow x_{0}} g(x) .
$$

2. Suppose that f is defined by

$$
f(x):= \begin{cases}3 x+2, & \text { if }-1 \leq x \\ -2 x+1, & \text { if } x<-1\end{cases}
$$

Determine at each point whether or not f is continuous. Justify your answer.
3. Determine the domain of $F(x):=\sqrt{\frac{x^{2}-2 x+5}{x^{3}-1}}$ and carefully show that F is continuous on its domain.

