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Chapter 3 deals with limits and the topology of IR. First we recall the concept
of induction.

Theorem. (Principle of Mathematical Induction.) Suppose that a statement
p(n) is defined for each natural number n. If

1. p(1) is true
2. ((p(n) true) = (p(n+1) true)) is a true statement for each n € IN,

then p(n) is a true statement for each natural number n.

Proof. Suppose to the contrary that the set B := {n € IN| p(n) false} is not
empty. Notice that 1 ¢ B. Let N be the smallest element of B (possible since
you can take a minimum of a finite set of integers), then set n := N — 1. Observe
by assumption (1) that n € IV, and by the definition of B that p(n) is true. By
assumption (2), it follows that p(n41) is true. But n +1 = N. Contradiction.
Hence B must be empty. O

Example. These will useful in our study of convergence. Both are proved by
induction.

no. 1 —pntl
1. = —if 1.
J;)r - , if r £

2. 1+na<(l+a)" ifa>0~&neIN. (Bernoulli’s inequality)

Defn. If € > 0 an e-neighborhood of a is defined to be the set
Ne(a) '={r € R| |x — a|] < €}.
Notice that N.(a) = (a — €,a + €).

Defn. A sequence of real numbers is defined to be a mapping from the natural
numbers IV to the reals and is denoted by aq, as, as, . .. or by {a,,} > . The following
definitions are used throughout the course:

1. {a,} is bounded, if |a,| < K, for all n € IN.

2. {ay} is convergent to a, denoted by lim a, = a, if each e-nbhd of a contains all
but a finite number of terms of the sequence. We also use the shorter notation
a, — a when there is no ambiguity on the indices.



Example. The following are examples of sequences:

1.
2.
3.

1/2,1/3,1/4,---
1,7”,7“2,7”3, e

L l4+r, 14+r+7% 1+r+r2403, .-

Lemma. lim a, = a if and only if

for every € > 0, there exists NV € INso that if n > IV, then |a, —a| < e.
In short hand this reads ‘Ve > 0, 3N = N(e) € N 3 n > IN(¢) = l|a, —a|] <¢€’

Proof. Notice that if a statement is true except for at most a finite number of terms,
then there is a a largest integer for which it is not true. Take N to be that integer’s
successor. U

Example.

1.

1
lim — = 0.
n—oo /rL

Proof. Use the Archimedean Principle.
, 3n? —1

lim ———— =

=02 4 n 425

(Hint: For a given € > 0, use N := max{76,4N;} where N; is the ‘cutoff’ for
Example 1, i.e. any integer larger than 1/¢)

CIf || <1, then 7" — 0 .

Proof. If » = 0, then the conclusion follows straight away. Suppose that
0 < |r] <1, then if b := 1/|r| — 1 we see that b > 0 and |r| = 1/(1+b). By
Bernoulli’s inequality, |[r"|™! = (1 + b)" > 1 + nb. Inverting this inequality
gives |r" — 0| < 1/(1 + nb). By example 1, pick N so that 1/n < be if n > N.

Hence,
1

<_
14+nb nb
T}i—%loanzl/(l_r)? if a, =1+r+7r>+---+r"and |r] <1.

" —0] < <e ifn>N. O

Proof. It r = 0, the conclusion follows immediately. We may suppose then
that 0 < |r| < 1. In this case, we use the identity above, i.e.

n 1 — pntd

j=0 1—r



to see that

ap —a=—r""/(1—r)
where a := 1/(1 —r). Now, given € > 0, by example 3 there is an Ny such
that n > Ny implies |r"| < (1?(')6. Combined with the displayed equation,

this gives |a, —a| < eif n > Ny. O

Theorem. If 7}1_}1130 a, exists, then it is unique.

Proof. Suppose that nh_)rgo a, = A; and nh_)n(f)lo a, = A, and that A; # A;. Set
e := |A; — Ay|/2. Now e > 0 so there exists Ni, such that if n > N; then
la, — Aj| < €. Since the sequence converges to Ay, we also have that there exists
Ny, such that if n > Ny then |a, — As| < e. Let N := Ny + Ny, then N is larger
than both N7 and Ny and so

‘Al — AQ‘ < ‘Al — CLN‘ + ‘AQ — CLN‘ < 2¢ = ‘Al — AQ‘,
which gives a contradiction. O

Theorem. Each convergent sequence is bounded.

Proof. Suppose that nh_)rglo a, = a. Let € := 1, then there is an integer N such
that a, € Nc(a) if n > N. This means that a — 1 < a, < a+1,ifn > N. If
M :=max{a+ 1,a1,a9,...,any_1} and m := min{a — 1,ay,as,...,ay_1}, then

m<a, <M, foralln. O

Note. Not every bounded sequence is convergent. For example, the sequence
a, := (—1)" is bounded, but the sequence is not convergent. To see this take € = 1.



