Math 554
 1/29/96

Chapter 3 deals with limits and the topology of \mathbb{R}. First we recall the concept of induction.

Theorem. (Principle of Mathematical Induction.) Suppose that a statement $\mathbf{p}(\mathbf{n})$ is defined for each natural number n. If

1. $\mathbf{p}(1)$ is true
2. $((\mathbf{p}(\mathbf{n})$ true $) \Longrightarrow(\mathbf{p}(\mathbf{n}+\mathbf{1})$ true $))$ is a true statement for each $n \in \mathbb{N}$,
then $\mathbf{p}(\mathbf{n})$ is a true statement for each natural number n.
Proof. Suppose to the contrary that the set $B:=\{n \in \mathbb{N} \mid \mathbf{p}(\mathbf{n})$ false $\}$ is not empty. Notice that $1 \notin B$. Let N be the smallest element of B (possible since you can take a minimum of a finite set of integers), then set $n:=N-1$. Observe by assumption (1) that $n \in \mathbb{N}$, and by the definition of B that $\mathbf{p}(\mathbf{n})$ is true. By assumption (2), it follows that $\mathbf{p}(\mathbf{n}+\mathbf{1})$ is true. But $n+1=N$. Contradiction. Hence B must be empty.

Example. These will useful in our study of convergence. Both are proved by induction.

1. $\sum_{j=0}^{n} r^{j}=\frac{1-r^{n+1}}{1-r}$, if $r \neq 1$.
2. $1+n a \leq(1+a)^{n}$, if $a>0 \& n \in \mathbb{N}$. (Bernoulli's inequality)

Defn. If $\epsilon>0$ an ϵ-neighborhood of a is defined to be the set

$$
N_{\epsilon}(a):=\{x \in \mathbb{R}| | x-a \mid<\epsilon\} .
$$

Notice that $N_{\epsilon}(a)=(a-\epsilon, a+\epsilon)$.
Defn. A sequence of real numbers is defined to be a mapping from the natural numbers $I N$ to the reals and is denoted by $a_{1}, a_{2}, a_{3}, \ldots$ or by $\left\{a_{n}\right\}_{n=1}^{\infty}$. The following definitions are used throughout the course:

1. $\left\{a_{n}\right\}$ is bounded, if $\left|a_{n}\right| \leq K$, for all $n \in \mathbb{N}$.
2. $\left\{a_{n}\right\}$ is convergent to a, denoted by $\lim _{n \rightarrow \infty} a_{n}=a$, if each ϵ-nbhd of a contains all but a finite number of terms of the sequence. We also use the shorter notation $a_{n} \rightarrow a$ when there is no ambiguity on the indices.

Example. The following are examples of sequences:

1. $1 / 2,1 / 3,1 / 4, \cdots$
2. $1, r, r^{2}, r^{3}, \cdots$
3. $1,1+r, 1+r+r^{2}, 1+r+r^{2}+r^{3}, \cdots$

Lemma. $\lim _{n \rightarrow \infty} a_{n}=a$ if and only if
for every $\epsilon>0$, there exists $N \in \mathbb{N}$ so that if $n \geq \mathbb{N}$, then $\left|a_{n}-a\right|<\epsilon$. In short hand this reads ' $\forall \epsilon>0, \exists N=N(\epsilon) \in I N \ni n \geq I N(\epsilon) \Longrightarrow\left|a_{n}-a\right|<\epsilon$.'
Proof. Notice that if a statement is true except for at most a finite number of terms, then there is a a largest integer for which it is not true. Take N to be that integer's successor.

Example.

1. $\lim _{n \rightarrow \infty} \frac{1}{n}=0$.

Proof. Use the Archimedean Principle.
2. $\lim _{n \rightarrow \infty} \frac{3 n^{2}-1}{n^{2}+n+25}=3$.
(Hint: For a given $\epsilon>0$, use $N:=\max \left\{76,4 N_{1}\right\}$ where N_{1} is the 'cutoff' for Example 1, i.e. any integer larger than $1 / \epsilon$)
3. If $|r|<1$, then $r^{n} \rightarrow 0$.

Proof. If $r=0$, then the conclusion follows straight away. Suppose that $0<|r|<1$, then if $b:=1 /|r|-1$ we see that $b>0$ and $|r|=1 /(1+b)$. By Bernoulli's inequality, $\left|r^{n}\right|^{-1}=(1+b)^{n} \geq 1+n b$. Inverting this inequality gives $\left|r^{n}-0\right| \leq 1 /(1+n b)$. By example 1 , pick N so that $1 / n<b \epsilon$ if $n \geq N$. Hence,

$$
\left|r^{n}-0\right| \leq \frac{1}{1+n b}<\frac{1}{n b}<\epsilon, \quad \text { if } n \geq N .
$$

4. $\lim _{n \rightarrow \infty} a_{n}=1 /(1-r)$, if $a_{n}:=1+r+r^{2}+\cdots+r^{n}$ and $|r|<1$.

Proof. If $r=0$, the conclusion follows immediately. We may suppose then that $0<|r|<1$. In this case, we use the identity above, i.e.

$$
a_{n}:=\sum_{j=0}^{n} r^{n}=\frac{1-r^{n+1}}{1-r}
$$

to see that

$$
a_{n}-a=-r^{n+1} /(1-r)
$$

where $a:=1 /(1-r)$. Now, given $\epsilon>0$, by example 3 there is an N_{0} such that $n \geq N_{0}$ implies $\left|r^{n}\right|<\left(\frac{1-|r|}{|r|}\right) \epsilon$. Combined with the displayed equation, this gives $\left|a_{n}-a\right|<\epsilon$ if $n \geq N_{0}$.

Theorem. If $\lim _{n \rightarrow \infty} a_{n}$ exists, then it is unique.
Proof. Suppose that $\lim _{n \rightarrow \infty} a_{n}=A_{1}$ and $\lim _{n \rightarrow \infty} a_{n}=A_{2}$ and that $A_{1} \neq A_{2}$. Set $\epsilon:=\left|A_{1}-A_{2}\right| / 2$. Now $\epsilon>0$ so there exists N_{1}, such that if $n \geq N_{1}$ then $\left|a_{n}-A_{1}\right|<\epsilon$. Since the sequence converges to A_{2}, we also have that there exists N_{2}, such that if $n \geq N_{2}$ then $\left|a_{n}-A_{2}\right|<\epsilon$. Let $N:=N_{1}+N_{2}$, then N is larger than both N_{1} and N_{2} and so

$$
\left|A_{1}-A_{2}\right| \leq\left|A_{1}-a_{N}\right|+\left|A_{2}-a_{N}\right|<2 \epsilon=\left|A_{1}-A_{2}\right|,
$$

which gives a contradiction.
Theorem. Each convergent sequence is bounded.
Proof. Suppose that $\lim _{n \rightarrow \infty} a_{n}=a$. Let $\epsilon:=1$, then there is an integer N such that $a_{n} \in N_{\epsilon}(a)$ if $n \geq N$. This means that $a-1<a_{n}<a+1$, if $n \geq N$. If $M:=\max \left\{a+1, a_{1}, a_{2}, \ldots, a_{N-1}\right\}$ and $m:=\min \left\{a-1, a_{1}, a_{2}, \ldots, a_{N-1}\right\}$, then

$$
m \leq a_{n} \leq M, \text { for all } n
$$

Note. Not every bounded sequence is convergent. For example, the sequence $a_{n}:=(-1)^{n}$ is bounded, but the sequence is not convergent. To see this take $\epsilon=1$.

