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Defn. The real numbers are defined to be a set IR with two binary operations (+, ·) which satisfy
the following properties: Given any a, b, c in IR

1. a+ (b+ c) = (a+ b) + c.
2. a+ b = b+ a.
3. ∃0 ∈ IR 3 a+ 0 = a,∀a ∈ IR.
4. for each a ∈ IR, ∃(−a) ∈ IR, so that a+ (−a) = 0.

5. a · (b · c) = (a · b) · c.
6. a · b = b · a.
7. ∃1 ∈ IR 3 1 6= 0 and a · 1 = a,∀a ∈ IR.
8. for each a ∈ IR with a 6= 0, ∃a−1 ∈ IR, so that a · a−1 = 1.

9. a · (b+ c) = (a · b) + (a · c).

Moreover, there is a distinguished subset IP (the positive cone) of IR with the following proper-
ties: Given any a, b in IP ,

a. a+ b ∈ IP ,
b. a · b ∈ IP ,
c. For each a in IR, exactly one of the following properties holds:

i) a ∈ IP ,
ii) −a ∈ IP ,
iii) a = 0.

Finally, IR must satisfy the least upper bound property, that is, each nonempty subset of IR
which has an upper bound has a least upper bound. These terms are defined shortly.

Notation:

‘b− a’ is defined as b+ (−a).
‘a < b’ means that b− a ∈ IP .
‘a ≤ b’ means either a < b or a = b.
The fraction ‘ a

b
’ means a · b−1.

Lemma. For each a ∈ IR,

(i.) (−a) = (−1) · a.
(ii.) 0 < 1.
(iii.) if 0 < a, then (−a) < 0.

Proof. Since
a+ ((−1) · a) = (1 · a) + ((−1) · a) = a · (1 + (−1)) = 0 · a = 0,

it follows from Homework Problem 2.3 that α := (−1) · a is an additive inverse for a. But additive
inverses are unique (from your Homework Problem 2.2), so the conclusion of part (i) follows.

To prove part (ii), we assume to the contrary, i.e. that 1 6∈ IP . By the definition, 1 6= 0, so
(−1) ∈ IP and therefore 0 < −1. But (−1) · (−1) = −(−1) = 1 by part (i) and the HW Problem
that additive inverses are unique. This shows that 1 ∈ IP by property (b) of the positive cone and
the assumption that (−1) ∈ IP . Contradiction, by the tricotomy property (c).



For part (iii), observe that 0 < a means a ∈ IP . Since additive inverses are unique, then
−(−a) = a, and so (0− (−a)) = −(−a) ∈ IP . This is equivalent to the statement (−a) < 0. 2

Homework #2 (Due Friday, Jan. 26)

1. Show that the additive (or multiplicative) identity is unique.

2. Show that additive (or multiplicative) inverses are unique.

3. Prove that a · 0 = 0 for each a in IR.

4. Prove that a < b and 0 < c implies that a · c < b · c.

5. For each pair of real numbers a, b, prove that exactly one of the following properties hold:

i) a < b,
ii) b < a,
iii) a = b.

6. Prove that if 0 < a < b, then 0 <
1

b
<

1

a
.

7. Prove that the interval (a, b) is uncountable.

8. Prove that −(a+ c) = (−a) + (−c).

Defn. A real number α is said to be an upper bound for A ⊆ IR if

a ≤ α, ∀a ∈ A.

A real number M is said to be a least upper bound for A ⊆ IR if

1. M is an upper bound for A
2. if α is any upper bound for A, then M ≤ α.

In this case, the supremum of A (=: supA) is defined as M . The definitions are similar for lower
bound, greatest lower bound and inf A, respectively.

Lemma. Suppose that A is a nonempty subset of IR, with least upper bound M , then for every
ε > 0, there exists a ∈ A such that

M − ε < a ≤M.

Proof. Since 0 < ε, then M − ε < M . This shows that M − ε cannot be an upper bound for A.
Hence there is a member of A, call it a, so that M − ε < a. 2

Theorem. (Archimedean Property) Suppose a, b are positive real numbers, then there exists
n ∈ IN such that b < n · a.
Proof. Suppose to the contrary that na < b for all n ∈ IN , then it follows that α := b/a is an upper
bound for the natural numbers. Let M be the least upper bound. By the lemma, 1/2 > 0, so there
exists a natural number N so that M − 1/2 < N . But then, M < N + 1/2 < N + 1, which shows
that M is not an upper bound for IN . Contradiction. 2

Corollary. The natural numbers are not bounded.



Corollary. Given any ε > 0, there exists n ∈ IN such that 1/n < ε.

Homework #3 (Due Monday, Jan. 29)

1. Prove that least upper bounds are unique.

2. Prove the first corollary to the Archimedean Property.

3. Prove the greatest lower bound property for the real numbers, i.e., each nonempty subset of IR
which has a lower bound, has a greatest lower bound.

Notation: Next we define intervals of real numbers.

(a, b) := {x ∈ IR|a < x < b} is called the open interval with endpoints a, b.
[a, b] := {x ∈ IR|a ≤ x ≤ b} is called the closed interval with endpoints a, b.
(a, b] := {x ∈ IR|a < x ≤ b} and [a, b) := {x ∈ IR|a ≤ x < b} are called the half open intervals

with endpoints a, b.

Theorem. Suppose that I is an interval with endpoints a, b and a < b, then I contains a rational
number.
Proof. Define the length of I by ` := b−a. By the previous corollary, there exists no ∈ IN such that
0 < 1/no < `. Let A := {k| k an integer and k/no < a}. A is nonempty, since the negative integers
are not bounded from below. Let ko belong to A. Set B := {k| k an integer and k ≥ ko}∩A. Also,
A is bounded from above by a · no, which shows that B is in fact a finite set of integers. Let K be
the largest member of B and therefore of A, then K + 1 6∈ A. Let r := (K + 1)/no, then

a <
K + 1

no
<
K

no
+ ` ≤ a+ (b− a) = b,

which shows that the rational r ∈ (a, b) ⊆ I. 2

Corollary. Each interval with nonzero length contains an infinite number of rationals.

Defn. A real number is said to be irrational if it is not rational.

Corollary. Each interval with nonzero length contains an uncountably infinite number of irrationals.

We establish a few other facts about irrational numbers and also prove directly that each interval
of positive length contains an infinite number of irrationals.

Lemma. The product of a nonzero rational with an irrational is irrational.
Proof. Suppose that q1 · α = q2, where q1, q2 are rational and α is irrational. Since q1 6= 0, then
α = q2/q1 and it follows that α is rational. Contradiction. 2

Lemma. If m is an odd integer, then m2 is odd.
Proof. If m is odd, then there exists an integer k such that m = 2k + 1. In this case m2 =
2(2k2 + 2k) + 1. 2

Lemma.
√

2 is irrational.



Proof. Suppose that
√

2 = m/n where m,n are integers with n > 0. We may assume that the
rational is in lowest terms (i.e. m and n have no common factors). Squaring the equation and
multiplying by n2, we obtain that m2 = 2n2. This shows that m2 is even. By the lemma m must
be even and equivalently that it contains 2 as a factor. This shows 4k2 = 2n2 for some integer k.
Consequently, n is even and 2 appears as one of its factors. Contradiction, since m/n was supposed
to be in lowest terms. 2

Proof. (Another proof of the ‘density’ of the irrationals) Let a, b be the endpoints of the interval
I. Consider the interval (a/

√
2, b/
√

2). It has length (b − a)/
√

2 > 0, and so contains a nonzero
rational number q. It follows that q

√
2 is between a and b and hence belongs to I. 2

Defn. The absolute value of a real number a is defined by

|a| :=
{
a, if a ≥ 0
−a, if a < 0.

Lemma. The absolute value function has the following properties:

1. |a| ≥ 0 for all a ∈ IR.
2. ±a ≤ |a|
3. | − a| = |a|
4. |a · b| = |a| · |b|
5. |a+ b| ≤ |a|+ |b|
6. ||b| − |a|| ≤ |b− a|

Proof. To prove property 1, ‘case it out.’ Either a ≥ 0 or a < 0. In the first case |a| = a ≥ 0. In
the second case, |a| = −a > 0, since a < 0. Property 2 follows similarly. Properties 3 and 4 are left
for the student.

To prove property 5, recall that either c := a + b satisfies c ≥ 0 or c < 0. In the first case,
|c| = c = a + b ≤ |a| + |b|. In the second case, |c| = −c = −a + (−b) ≤ |a| + |b|. This establishes
property 5.

To prove property 6, use the fact that |b| = |(b − a) + a| ≤ |b − a| + |a| and subtract |a|
from each side. This shows that |b| − |a| ≤ |b − a|. By symmetry in a and b, one proves that
|a| − |b| ≤ |a− b| = |b− a|. 2

Homework #4 (Due Wednesday, Jan. 31)

1. Work problem 1.46 in the text.

2. Work problem 1.54 in the text.

Graduate Student’s Additional Homework

1. Prove 0 < a < b that implies that a2 < b2.

2. Prove that the number α := sup{x ∈ IR|x2 < 2} is the unique positive number that satisfies
the equation α2 = 2.

3. Give a definition for square roots of nonnegative real numbers.

4. Prove that |a| =
√
a2 for all a ∈ IR.


