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Defn. A collection of n + 1 distinct points of the interval [a, b]

P := {x0 = a < x1 < · · · < xi−1 < xi < · · · < b =: xn}

is called a partition of the interval. In this case, we define the norm of the partition by

‖P‖ := max
1≤i≤n

∆xi.

where ∆xi := xi − xi−1 is the length of the i-th subinterval [xi−1, xi].

Defn. For a given partition P , we define the Riemann upper sum of a function f by

U(f, P ) :=
n

∑

i=1
Mi ∆xi

where Mi denotes the supremum of f over each of the subintervals [xi−1, xi]. Similarly, we define
the Riemann lower sum of a function f by

L(f, P ) :=
n

∑

i=1
mi ∆xi

where mi denotes the infimum of f over each of the subintervals [xi−1, xi]. Since mi ≤ Mi, we note
that

L(f, P ) ≤ U(f, P ).

for any partition P .

Defn. Suppose P1, P2 are both partitions of [a, b], then P2 is called a refinement of P1, denoted by

P1 ≺ P2,

if as sets P1 ⊆ P2.

Note. If P1 ≺ P2, it follows that ‖P2‖ ≤ ‖P1‖ since each of the subintervals formed by P2 is
contained in a subinterval arising from P1.

Lemma. If P1 ≺ P2, then
L(f, P1) ≤ L(f, P2).

and
U(f, P2) ≤ U(f, P1).

Proof. Suppose first that P1 is a partition of [a, b] and that P2 is the partition obtained from P1 by
adding an additional point z. The general case follows by induction, adding one point at at time.
In particular, we let

P1 := {x0 = a < x1 < · · · < xi−1 < xi < · · · < b =: xn}

and
P2 := {x0 = a < x1 < · · · < xi−1 < z < xi < · · · < b =: xn}



for some fixed i. We focus on the upper Riemann sum for these two partitions, noting that the
inequality for the lower sums follows similarly. Observe that

U(f, P1) :=
n

∑

j=1
Mj ∆xj

and

U(f, P2) :=
i−1
∑

j=1
Mj ∆xj + M(z − xi−1) + M̃(xi − z) +

n
∑

j=i+1
Mj ∆xj

where M := sup[xi−1,z] f(x) and M̃ := sup[z,xi] f(x). It then follows that U(f, P2) ≤ U(f, P1) since

M, M̃ ≤ Mi. 2

Defn. If P1 and P2 are arbitrary partitions of [a, b], then the common refinement of P1 and P2 is
defined as the formal union of the two.

Corollary. Suppose P1 and P2 are arbitrary partitions of [a, b], then

L(f, P1) ≤ U(f, P2).

Proof. Let P be the common refinement of P1 and P2, then

L(f, P1) ≤ L(f, P ) ≤ U(f, P ) ≤ U(f, P2). 2

Defn. The lower Riemann integral of f over [a, b] is defined to be
∫ b

a
f(x)dx := sup

all partitions
P of [a,b]

L(f, P ).

Similarly, the upper Riemann integral of f over [a, b] is defined to be

∫ b

a
f(x)dx := inf

all partitions
P of [a,b]

U(f, P ).

By the definitions of least upper bound and greatest lower bound, it is evident that for any function
f there holds

∫ b

a
f(x)dx ≤

∫ b

a
f(x)dx.

Defn. A function f is Riemann integrable over [a, b] if the upper and lower Riemann integrals
coincide. We denote this common value by

∫ b
a f(x) dx.

Theorem. A necessary and sufficient condition for f to be Riemann integrable is given ε > 0,
there exists a partition P of [a, b] such that

(∗) U(f, P )− L(f, P ) < ε.



Note that in this case, the unique number between these two values is
∫ b
a f(x) dx.

Proof. First we show that (*) is a sufficient condition. This follows immediately, since for each ε > 0
that there is a partition P such that (*) holds,

∫ b

a
f(x)dx−

∫ b

a
f(x)dx ≤ U(f, P )− L(f, P ) < ε.

Since ε > 0 was arbitrary, then the upper and lower Riemann integrals of f must coincide.
To prove that (*) is a necessary condition for f to be Riemann integrable, we let ε > 0. By the

definition of the upper Riemann integral as a infimum of upper sums, we can find a partition P1 of
[a, b] such that

∫ b

a
f(x)dx ≤ U(f, P1) <

∫ b

a
f(x)dx + ε/2

Similarly, we have
∫ b

a
f(x)dx− ε/2 < L(f, P2) ≤

∫ b

a
f(x)dx.

Let P be a common refinement of P1 and P2, then subtracting the two previous inequalities implies,

U(f, P )− L(f, P ) ≤ U(f, P1)− L(f, P2) < ε. 2




