Math 554 - Differentiation Handout \#8

Defn. A function f is said to be differentiable at x_{0} if

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

exists. In this case the limit is called the derivative of f at x_{0} and is denoted $f^{\prime}\left(x_{0}\right)$.
Note. 1. This definition is equivalent to the requirement that the following limit exist:

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right) .
$$

2. This, in turn, is equivalent to the following statement about how fast $f(x)$ converges to $f\left(x_{0}\right)$ as $x \rightarrow x_{0}$:
there exists a function η such that $\lim _{x \rightarrow x_{0}} \eta(x)=0$ and

$$
\begin{equation*}
f(x)-f\left(x_{0}\right)=\left(x-x_{0}\right)\left(f^{\prime}\left(x_{0}\right)+\eta(x)\right) . \tag{*}
\end{equation*}
$$

Examples: 1. If $f(x):=x^{2}$, then $f^{\prime}(x)=2 x$.
2. If $g(x):=|x|$, then $g^{\prime}(0)$ does not exist.
3. If $h(x):=x|x|$, then $h^{\prime}(x)$ exists and equals $2|x|$.

Theorem. If f is differentiable at x_{0}, then f is continuous at x_{0}. Proof. Use (${ }^{*}$) and let $x \rightarrow x_{0}$.

Theorem. (Basic rules of differentiation: sums, products, quotients) Suppose that f and g are differentiable at x_{0}, then

1. $(f+g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)+g^{\prime}\left(x_{0}\right)$.
2. $(f g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) g\left(x_{0}\right)+f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)$.
3. $(f / g)^{\prime}\left(x_{0}\right)=\left(g\left(x_{0}\right) f^{\prime}\left(x_{0}\right)-f\left(x_{0}\right) g^{\prime}\left(x_{0}\right)\right) / g\left(x_{0}\right)^{2}, \quad$ if $g\left(x_{0}\right) \neq 0$.

Theorem. (Chain rule) If f is differentiable at x_{0} and g is differentiable at $y_{0}:=$ $f\left(x_{0}\right)$, then $h:=g \circ f$ is differentiable at x_{0} and

$$
h^{\prime}\left(x_{0}\right)=g^{\prime}\left(f\left(x_{0}\right)\right) f^{\prime}\left(x_{0}\right)
$$

Proof. Use (*) for f at x_{0} and for g at $y_{0}:=f\left(x_{0}\right)$:

$$
\begin{aligned}
\frac{h(x)-h\left(x_{0}\right)}{x-x_{0}} & =\frac{g(y)-g\left(y_{0}\right)}{x-x_{0}}=\frac{y-y_{0}}{x-x_{0}}\left(g^{\prime}\left(y_{0}\right)+\eta_{2}(y)\right) \\
& =\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}\left(g^{\prime}\left(y_{0}\right)+\eta_{2}(y)\right) \\
& =\left(f^{\prime}\left(x_{0}\right)+\eta_{1}(x)\right)\left(g^{\prime}\left(y_{0}\right)+\eta_{2}(y)\right)
\end{aligned}
$$

where $y:=f(x)$. The proof is completed by using this equation, letting $x_{n} \rightarrow x_{0}$, and noticing that $y_{n} \rightarrow y_{0}$ where $y_{n}:=f\left(x_{n}\right)$.

Theorem. (Rolle's Theorem) Suppose that ϕ is differentiable on (a, b), is continuous on $[a, b]$, and vanishes at the endpoints, then there exists x_{0} strictly between a and b such that $\phi^{\prime}\left(x_{0}\right)=0$.
Proof. If ϕ is constant, then any point can be selected for x_{0}. Otherwise, we may assume WLOG that ϕ has positive values. By the Extreme Value Theorem, let x_{0} be such that $\phi(x) \leq \phi\left(x_{0}\right)$ for all $a \leq x \leq b$. First, let $x_{n} \downarrow x_{0}$, then since x_{0} gives a max, we have

$$
0 \geq \frac{\phi\left(x_{n}\right)-\phi\left(x_{0}\right)}{x_{n}-x_{0}} \rightarrow \phi^{\prime}\left(x_{0}\right)
$$

and so, by the Squeeze Theorem, $\phi^{\prime}\left(x_{0}\right) \leq 0$. Similarly, $\phi^{\prime}\left(x_{0}\right) \geq 0$.
Note. Within the proof we actually established the critical point procedure of calculus: local max and min can only occur at critical points.

Corollary. (Mean Value Theorem) Suppose that f is differentiable on (a, b) and is continuous on $[a, b]$, then there exists x_{0} strictly between a and b such that

$$
f^{\prime}\left(x_{0}\right)=\frac{f(b)-f(a)}{b-a} .
$$

Proof. Let

$$
\phi(x):=f(x)-\left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]
$$

and apply Rolle's theorem.
Defn. F is called an anti-derivative of f if F is differentiable and $F^{\prime}(x)=f(x)$
Corollary. If both F and G are anti-derivatives of f, then they differ by a constant, i.e. there exists a constant c such that $F(x)-G(x)=c$, for all $x \in \operatorname{dom}(f)$.

