Connectedness
 Handout \#7

Defn. A disconnection of a set A is two nonempty sets A_{1}, A_{2} whose disjoint union is A and each is open relative to A. A set is said to be connected if it does not have any disconnections.

Example. The set $\left(0, \frac{1}{2}\right) \cup\left(\frac{1}{2}, 1\right)$ is disconnected.
Theorem. Each interval (open, closed, half-open) I is a connected set.
Proof. Let A_{1}, A_{2} be a disconnection for I. Let $a_{j} \in A_{j} \neq \emptyset, j=1,2$. We may assume WLOG that $a_{1}<a_{2}$, otherwise relabel A_{1} and A_{2}. Consider $E_{1}:=\{x \in$ $\left.A_{1} \mid x \leq a_{2}\right\}$, then E_{1} is nonempty with a_{2} as an upper bound. Let $a:=\operatorname{lub} E_{1}$. But $a_{1} \leq a \leq a_{2}$ implies $a \in I$ since I is an interval. First note that by the lemma to the least upper bound property either $a \in A_{1}$ or a is a limit point of A_{1}. In either case, $a \in A_{1}$ since A_{1} is closed relative to I. Since A_{1} is also open relative to the interval I, then there is an $\epsilon>0$ so that $N_{\epsilon}(a) \in A_{1}$. But then $a+\epsilon / 2 \in A_{1}$ and is less than a_{2}, which contradicts that a is the lub of E_{1}.

Theorem. If A is a connected set, then A is an interval.
Proof. Otherwise, there would be $a_{1}<a<a_{2}$, with $a_{j} \in A$ and $a \notin A$. But then $\mathcal{O}_{1}:=(-\infty, a) \cap A$ and $\mathcal{O}_{2}:=(a, \infty) \cap A$ form a disconnection of A.

Note. Each open subset of \mathbb{R} is the countable disjoint union of open intervals. This is seen by looking at open components (maximal connected sets) and recalling that each open interval contains a rational. Relatively open sets (relative with respect to $A \subseteq \mathbb{R}$) are just restrictions of these.

Theorem. The continuous image of a connected set is connected. The continuous image of $[a, b]$ is an interval $[c, d]$ where $c=\min _{a \leq x \leq b} f(x)$ and $d=\max _{a \leq x \leq b} f(x)$.
Proof. Any disconnection of the image $f([a, b])$ could be 'drawn back' to form a disconnection of $[a, b]$: if $\left\{\mathcal{O}_{1}, \mathcal{O}_{2}\right\}$ forms a disconnection for $f(I)$, then $\left\{f^{-1}\left(\mathcal{O}_{1}\right), f^{-1}\left(\mathcal{O}_{2}\right)\right\}$ forms a disconnection for $I=[a, b]$. So it is impossible that $f([a, b])$ is not connected.

Corollary. (Intermediate Value Theorem) Suppose f is a real-valued function which is continuous on an interval I. If $a_{1}, a_{2} \in I$ and y is a number between $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$, then there exists a between a_{1} and a_{2} such that $f(a)=y$.

Proof. We may assume WLOG that $I=\left[a_{1}, a_{2}\right]$. We know that $f(I)$ is a closed interval, say I_{1}. Any number y between $f\left(a_{1}\right)$ and $f\left(a_{2}\right)$, belongs to $I_{1}=f(I)$ and so there is an $a \in\left[a_{1}, a_{2}\right]$ such that $f(a)=y$.

Theorem. Suppose that $f:[a, b] \rightarrow[a, b]$ is continuous, then f has a fixed point, i.e. there is an $\alpha \in[a, b]$ such that $f(\alpha)=\alpha$.

Proof. Consider the function $g(x):=x-f(x)$, then $g(a) \leq 0 \leq g(b)$. g is continuous on $[a, b]$, so by the Intermediate Value Theorem, there is an $\alpha \in[a, b]$ such that $g(\alpha)=0$. This implies that $f(\alpha)=\alpha$.

