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Chapter 3 deals with limits and the topology of IR. First we recall the concept
of induction.

Theorem. (Principle of Mathematical Induction.) Suppose that a statement
p(n) is defined for each natural number n. If

1. p(1) is true

2. ((p(n) true) =⇒ (p(n+1) true)) is a true statement for each n ∈ IN,

then p(n) is a true statement for each natural number n.
Proof. Suppose to the contrary that the set B := {n ∈ IN | p(n) false} is not
empty. Notice that 1 �∈ B. Let N be the smallest element of B (possible since
you can take a minimum of a finite set of integers), then set n := N − 1. Observe
by assumption (1) that n ∈ IN , and by the definition of B that p(n) is true. By
assumption (2), it follows that p(n+1) is true. But n + 1 = N . Contradiction.
Hence B must be empty. �

Example. These will useful in our study of convergence. Both are proved by
induction.

1.
n∑

j=0
rj =

1 − rn+1

1 − r
, if r �= 1.

2. 1 + na ≤ (1 + a)n, if a > 0 & n ∈ IN . (Bernoulli’s inequality)

Defn. If ε > 0 an ε-neighborhood of a is defined to be the set

Nε(a) := {x ∈ IR| |x − a| < ε}.
Notice that Nε(a) = (a − ε, a + ε).

Defn. A sequence of real numbers is defined to be a mapping from the natural
numbers IN to the reals and is denoted by a1, a2, a3, . . . or by {an}∞n=1. The following
definitions are used throughout the course:

1. {an} is bounded, if |an| ≤ K, for all n ∈ IN .
2. {an} is convergent to a, denoted by lim

n→∞ an = a, if each ε-nbhd of a contains all
but a finite number of terms of the sequence. We also use the shorter notation
an → a when there is no ambiguity on the indices.



Example. The following are examples of sequences:

1. 1/2, 1/3, 1/4, · · ·
2. 1, r, r2, r3, · · ·
3. 1, 1 + r, 1 + r + r2, 1 + r + r2 + r3, · · ·

Lemma. lim
n→∞ an = a if and only if

for every ε > 0, there exists N ∈ INso that if n ≥ IN, then |an − a| < ε.

In short hand this reads ‘∀ε > 0, ∃N = N(ε) ∈ IN 
 n ≥ IN(ε) =⇒ |an − a| < ε.’

Proof. Notice that if a statement is true except for at most a finite number of terms,
then there is a a largest integer for which it is not true. Take N to be that integer’s
successor. �

Example.

1. lim
n→∞

1

n
= 0.

Proof. Use the Archimedean Principle.

2. lim
n→∞

3n2 − 1

n2 + n + 25
= 3.

(Hint: For a given ε > 0, use N := max{76, 4N1} where N1 is the ‘cutoff’ for
Example 1, i.e. any integer larger than 1/ε)

3. If |r| < 1, then rn → 0 .

Proof. If r = 0, then the conclusion follows straight away. Suppose that
0 < |r| < 1, then if b := 1/|r| − 1 we see that b > 0 and |r| = 1/(1 + b). By
Bernoulli’s inequality, |rn|−1 = (1 + b)n ≥ 1 + nb. Inverting this inequality
gives |rn − 0| ≤ 1/(1 + nb). By example 1, pick N so that 1/n < bε if n ≥ N .
Hence,

|rn − 0| ≤ 1

1 + nb
<

1

nb
< ε, if n ≥ N. �

4. lim
n→∞ an = 1/(1 − r), if an := 1 + r + r2 + · · · + rn and |r| < 1.

Proof. If r = 0, the conclusion follows immediately. We may suppose then
that 0 < |r| < 1. In this case, we use the identity above, i.e.

an :=
n∑

j=0
rn =

1 − rn+1

1 − r



to see that
an − a = −rn+1/(1 − r)

where a := 1/(1 − r). Now, given ε > 0, by example 3 there is an N0 such
that n ≥ N0 implies |rn| < (1−|r|

|r| )ε. Combined with the displayed equation,

this gives |an − a| < ε if n ≥ N0. �

Theorem. If lim
n→∞ an exists, then it is unique.

Proof. Suppose that lim
n→∞ an = A1 and lim

n→∞ an = A2 and that A1 �= A2. Set
ε := |A1 − A2|/2. Now ε > 0 so there exists N1, such that if n ≥ N1 then
|an − A1| < ε. Since the sequence converges to A2, we also have that there exists
N2, such that if n ≥ N2 then |an − A2| < ε. Let N := N1 + N2, then N is larger
than both N1 and N2 and so

|A1 − A2| ≤ |A1 − aN | + |A2 − aN | < 2ε = |A1 − A2|,
which gives a contradiction. �

Theorem. Each convergent sequence is bounded.
Proof. Suppose that lim

n→∞ an = a. Let ε := 1, then there is an integer N such
that an ∈ Nε(a) if n ≥ N . This means that a − 1 < an < a + 1, if n ≥ N . If
M := max{a + 1, a1, a2, . . . , aN−1} and m := min{a − 1, a1, a2, . . . , aN−1}, then

m ≤ an ≤ M, for all n. �

Note. Not every bounded sequence is convergent. For example, the sequence
an := (−1)n is bounded, but the sequence is not convergent. To see this take ε = 1.


