Complex Variables

(Math 552 - 752I)
Test 3 - November 30, 2000

Name: \qquad
Directions: Show your work for full credit. Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room.

1	$(20 \mathrm{pts})$
2	$(16 \mathrm{pts})$
3	$(16 \mathrm{pts})$
4	$(16 \mathrm{pts})$
5	$(16 \mathrm{pts})$
6	$(16 \mathrm{pts})$
7	$(16 \mathrm{pts})$

1. State Cauchy's theorem and sketch its proof.

Work any 5 of the following 6 problems. Be sure to indicate which 5 you wish to be

 graded.2. Compute the line integral $\int_{\Gamma}-x d x+y d y$, where Γ is the directed circular line segment from $(1,0)$ to $(0,1)$
3. a.) Parameterize the region Ω which is the interior of the triangle with vertices $(0,0),(1,0)$, and $(1,1)$.
b.) Compute $\oint_{\Gamma} \bar{z} d z$ where Γ is the boundary of Ω traversed once in the positive direction.
4. Use Green's theorem to compute the line integral $\oint_{\Gamma}(-y) d x+x d y$, where Γ is the perimeter of the upper unit semicircle with center $(0,0)$ traversed once in the counterclockwise direction.
5. Use partial fractions to compute $\int_{\Gamma} \frac{z}{z^{2}+1} d z$ where Γ is the positively oriented circle about i of radius 1 .
6. Compute

$$
\oint_{\Gamma} \frac{\sin (z)}{z^{2}+1} d z
$$

where Γ is the curve parameterized as $z(t)=2 e^{i t}+1,0 \leq t \leq 2 \pi$. Describe this curve.

7. Compute

$$
\oint_{\Gamma} \frac{\cos (z)}{(2 z-\pi)^{3}} d z
$$

where Γ is the counterclockwise circle of radius 2 and center the origin.

Extra Credit (15 pts.)

Show that if f is analytic on a region containing the simple, closed, piecewise-smooth curve Γ, and z_{0} does not lie on Γ, then

$$
\oint_{\Gamma} \frac{f^{\prime}(z)}{z-z_{0}} d z=\oint_{\Gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

