Complex Variables (Math 552 - 752I) Test 3 - November 30, 2000

Name: _____

Directions: Show your work for full credit. Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room.

1	(20 pts)
$\boxed{2}$	(16 pts)
3	(16 pts)
4	(16 pts)
5	(16 pts)
6	(16 pts)
7	(16 pts)

- 1. State Cauchy's theorem and sketch its proof.
- Work any 5 of the following 6 problems. Be sure to indicate which 5 you wish to be graded.
 - 2. Compute the line integral $\int_{\Gamma} -x \, dx + y \, dy$, where Γ is the directed circular line segment from (1,0) to (0,1)
 - 3. a.) Parameterize the region Ω which is the interior of the triangle with vertices (0,0), (1,0), and (1,1).
 b.) Compute ∮_Γ z̄ dz where Γ is the boundary of Ω traversed once in the positive direction.
 - 4. Use Green's theorem to compute the line integral $\oint_{\Gamma} (-y) dx + x dy$, where Γ is the perimeter of the upper unit semicircle with center (0,0) traversed once in the counterclockwise direction.
 - 5. Use partial fractions to compute $\int_{\Gamma} \frac{z}{z^2 + 1} dz$ where Γ is the positively oriented circle about *i* of radius 1.
 - 6. Compute

$$\oint_{\Gamma} \frac{\sin(z)}{z^2 + 1} dz$$

where Γ is the curve parameterized as $z(t) = 2e^{it} + 1$, $0 \le t \le 2\pi$. Describe this curve.

7. Compute

$$\oint_{\Gamma} \frac{\cos(z)}{(2z-\pi)^3} dz$$

where Γ is the counterclockwise circle of radius 2 and center the origin.

Extra Credit (15 pts.)

Show that if f is analytic on a region containing the simple, closed, piecewise-smooth curve Γ , and z_0 does not lie on Γ , then

$$\oint_{\Gamma} \frac{f'(z)}{z - z_0} \, dz = \oint_{\Gamma} \frac{f(z)}{(z - z_0)^2} \, dz$$