Name:

\qquad
Directions: Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room.

1	$(10 p t s)$
2	$(15 p t s)$
3	$(10 p t s)$
4	$(15 p t s)$
5	$(15 p t s)$
6	$(17 p t s)$
7	$(18 p t s)$

1. Show that $\lim _{z \rightarrow 0} \frac{\cos (2 z)-1}{z}=0$. (Hint: $\left.f^{\prime}\left(z_{0}\right)=\lim _{z \rightarrow 0} \frac{f\left(z_{0}+z\right)-f\left(z_{0}\right)}{z}\right)$
2. a.) Verify that the function $u(x, y)=2 y-\exp (y) \sin (x)+1$ is harmonic for all complex $z=x+i y$.
b.) Compute all harmonic conjugates v of u.
3. a.) Define $\sin (z)$.
b.) Define $\sinh (z)$.
c.) Verify the identity: $\sinh (z)=-i \sin (i z)$.
4. Compute each of the following and write in the form $a+i b$:
a.) all values of $\log (i)$.
b.) $\cos (\pi-2 i)$
c.) $\log (i \mathrm{e})$
5. Solve for all z for which
a.) $e^{z}=2-2 i$
b.) $\sinh (z)=i$.
6. Using the definition of β^{α} and selecting the principal branch, set $f(z):=i^{z}$ (z complex).
a.) Determine the natural domain of f.
b.) Compute all values of i^{1-i}. What is its principal value, i.e. $f(1-i)$?
c.) Prove that $f^{\prime}(z)=\frac{i \pi}{2} i^{z}$.
7. a.) Parameterize the circle γ with radius 3 and center $-2+3 i$ which is traversed once in the counterclockwise direction.
b.) Parameterize the straight line segment γ from $z=-1+2 i$ to $z=1+i$ and compute the path integral $\int_{\gamma} 2 x-y d s$.

Extra Credit Suppose that f is an entire function such that $\operatorname{Imag}(f)$ is constant, then prove that f is constant.

