Name: \qquad

Directions: Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room.

1	$(14 p t s)$
2	$(14 p t s)$
3	$(15 p t s)$
4	$(16 p t s)$
5	$(10 p t s)$
6	$(16 p t s)$
7	$(15 p t s)$

1. Simplify the following expressions into the form of $a+i b$ with a, b real numbers:
a.) $\frac{i(1-i)^{2}}{1+i}$
b.) $(i+1)^{15}$
2. Sketch each of the following subsets of the complex numbers. For each one, determine the set's interior points and limit points. Determine if the set is open, closed, or a domain.
a.) $\{z \in C|1 \leq|z-2 i|<3\}$
b.) $\{z \in C \mid \operatorname{Real}(z)>0\} \cup\{z \in C||z|<1\}$
3. Compute all fourth roots of $-8 \sqrt{3}+8 i$.
4. a.) Give the definition of the limit of a function at a point z_{0} : $\lim _{z \rightarrow z_{0}} f(z)=L$.
b.) Determine $\lim _{n \rightarrow \infty} z_{n}$, if $z_{n}=\frac{n(3+i)}{n+1}$.
5. Using the definition of the derivative, show that $f^{\prime}(z)=2 z$ if $f(z)=z^{2}$.
6. Using the Cauchy Riemann conditions, determine which of the following functions are analytic. For those functions that are analytic, compute $f^{\prime}(z)$. (Note: $\left.z=x+i y\right)$.
(a) $\left(x^{3}-3 x y^{2}\right)+i\left(3 x^{2} y-y^{3}\right)$
(b) $e^{-x} \cos (y)+i e^{x} \sin (y)$
7. Determine the domain of each function and at which points it is analytic.
(a) $f(z)=e^{-2 z}$
(b) $g(z)=\frac{2 z-3}{1+z^{2}}$
