Complex Variables (MATH 552 - 752I)Test 1 - September 21, 2000

Name:

Directions: Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room.

1	(14pts)
2	(14pts)
3	(15pts)
4	(16pts)
5	(10pts)
6	(16pts)
7	(15pts)

- 1. Simplify the following expressions into the form of a + ib with a, b real numbers: a.) $\frac{i(1-i)^2}{1+i}$

 - b.) $(i+1)^{15}$
- 2. Sketch each of the following subsets of the complex numbers. For each one, determine the set's interior points and limit points. Determine if the set is open, closed, or a domain.
 - a.) $\{z \in C \mid 1 \le |z 2i| < 3\}$ b.) $\{z \in C \mid \text{Real}(z) > 0\} \cup \{z \in C \mid |z| < 1\}$
- 3. Compute all fourth roots of $-8\sqrt{3} + 8i$.
- 4. a.) Give the definition of the limit of a function at a point z_0 : $\lim_{z \to z_0} f(z) = L$.
 - b.) Determine $\lim_{n \to \infty} z_n$, if $z_n = \frac{n(3+i)}{n+1}$.
- 5. Using the definition of the derivative, show that f'(z) = 2z if $f(z) = z^2$.
- 6. Using the Cauchy Riemann conditions, determine which of the following functions are analytic. For those functions that are analytic, compute f'(z). (Note: z = x + iy).

(a)
$$(x^3 - 3xy^2) + i (3x^2y - y^3)$$

- (b) $e^{-x}\cos(y) + i e^{x}\sin(y)$
- 7. Determine the domain of each function and at which points it is analytic.
 - (a) $f(z) = e^{-2z}$
 - (b) $g(z) = \frac{2z 3}{1 + z^2}$