\qquad
Directions: Show your work for full credit. Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room.

1	$(10 \mathrm{pts})$
2	$(10 \mathrm{pts})$
3	$(15 \mathrm{pts})$
4	$(10 \mathrm{pts})$
5	$(10 \mathrm{pts})$
6	$(10 \mathrm{pts})$
7	$(10 \mathrm{pts})$
8	$(15 \mathrm{pts})$
9	$(15 \mathrm{pts})$

1. Simplify the following expressions into the form of $a+i b$ with a, b real numbers:
a. $\frac{(2 i+1)(i-1)}{i+1}$
b. all cube roots of $\sqrt{12}-2 i$ (Leave this one in polar form)
c. the principal value of $(1-i)^{i}$
2. a. State the Cauchy-Riemann equations.
b. Use them to determine if

$$
f(z):=\frac{\cos (y)-i \sin (y)}{\exp (x)}
$$

is entire, where $z=x+i y$.
3. State the Fundamental Theorem of Algebra.
4. State Cauchy's theorem and sketch its proof.
5. Compute directly (i.e. without using Green's theorem) the line integral $\oint_{\Gamma}(-y) d x+x d y$ around the upper semi-circle with radius one and center the origin.
6. Use Green's theorem to compute the line integral $\oint_{\Gamma}\left(-x^{2}\right) d x+(\exp (y)+5 x) d y$, where Γ is the perimeter of the unit circle with center $(0,0)$ traversed once in the counterclockwise direction.
7. Compute

$$
\oint_{\Gamma} \frac{\sin (z)}{z^{2}-z} d z
$$

where Γ is the curve parameterized by $z(t):=2 e^{i t}+1,0 \leq t \leq 2 \pi$.
8. State Liouville's theorem and sketch its proof.
9. Compute

$$
\oint_{|z|=1} \frac{\exp \left(k z^{n}\right)}{z} d z
$$

and use the result to show that

$$
\int_{0}^{2 \pi} \exp (k \cos (n \theta)) \cos (k \sin (n \theta)) d \theta=2 \pi .
$$

(Hint: Consider the imaginary part.)

