Differential Equations

(Math 242.501)
Sample Questions for Test \#3 - May 8, 2002

Name: \qquad

Directions:

Answer all questions in the space provided. You can also use the back of the facing opposite page if you need more room. You must show intermediate

1	$(25 \mathrm{pts})$
2	$(30 \mathrm{pts})$
3	$(20 \mathrm{pts})$
4	$(10 \mathrm{pts})$
5	$(15 \mathrm{pts})$

1. Compute the Laplace transform of the following functions:
a.) $t^{2} \sin (2 t)$
b.) $f(t):=\left\{\begin{array}{ll}\cos (2 t), & \pi / 4 \leq t \leq \pi / 2 ; \\ 0, & \text { otherwise. }\end{array} \quad\right.$ by using the unit step functions.
c.) $\tan (t) \delta_{\pi}$
2. Compute the following inverse Laplace transforms:
a.) $\frac{s}{(s+1)^{2}}$
b.) $\frac{s e^{-\frac{\pi s}{2}}}{s^{2}+4}$
c.) $\frac{1}{s^{2}(s-1)^{2}}$
3. Compute the Laplace transform of the solution to each of the following equations:
a.) $y^{\prime \prime}-y^{\prime}=e^{t} \cos (t), \quad y(0)=1, y^{\prime}(0)=-1$.
b.) $y^{\prime}(t)=1-\sin (t)-\int_{0}^{t} y(\tau) d \tau, \quad y(0)=0$.
4. Determine the 2-nd order Taylor approximation to $f(x)=x \ln x$ about $x=1$. Provide an error estimate over the interval $(1,1.1)$.
5. Use step size $h=.1$ and apply the Runge-Kutta method of second order, with parameter $b=1$, to estimate $y(.2)$ where y is the solution to the equation $y^{\prime}=(x-y)^{3}, \quad y(0)=.5$.
