Math 141.1 - Test I

Tuesday, Sept. 21, 1993

Name \qquad Show your work for full credit

1. Let f be defined by

$$
f(x)= \begin{cases}5-x^{2}, & \text { if }-1<x<1 \\ 2(2-x), & \text { if } x \geq 1\end{cases}
$$

(a) Sketch the graph of f.
(b) Determine the domain and range of f.
(c) Is f continuous at the points $x=-1,0,1$? Verify your answer.
2. Using the properties of limits, find the the following limits putting in each step:
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-4 x+3}{x^{2}-9}$
(b) $\lim _{x \rightarrow 2} \frac{x^{2}-4 x+3}{x^{2}-9}$
(c) $\lim _{x \rightarrow 0} \frac{\tan (x)}{x \cos (x)}$
3. Using the definition of derivative and the properties of limits, compute the derivative of f at $x=2$ where f is given by

$$
f(x)=x^{2}+x-3
$$

4. Let

$$
f(x)=2 x^{3}-6 x-2
$$

(a) Compute the slope of the tangent line to the graph of f when $x=1$.
(b) Give the equation of the tangent line to the graph of f at the same point.
(c) For which values of x is the tangent line horizontal?
5. Using the properties of derivatives, determine the derivatives of each of the following functions:
(a) $g(x)=\left(2 x^{2}-3\right)\left(1-2 x+x^{2}\right)$
(b) $f(x)=x^{2} e^{x}-2 x^{3} \quad$ (Hint: You can use $D_{x}\left(e^{x}\right)=e^{x}$)

6. [EXTRA CREDIT]

Using the definition of 'limit', prove that

$$
\lim _{x \rightarrow 0} x^{2}=0
$$

