Final Exam

Math 141.1
Dec. 17, 1993

Directions: Show your work for full credit. Clearly indicate in your work the problem number and your answer.

1. Determine if the following limits exist and if so their value:
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-3 x+2}{x^{2}-1}$
(b) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+\sin (x)}{1-x^{2}}$
(c) $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}$
(d) $\lim _{x \rightarrow 3^{-}} \frac{1}{x^{2}-9}$
2. Using the definition of derivative and properties of limits, compute $f^{\prime}(1)$ where $f(x):=$ $2+x-x^{2}$.
3. Determine derivatives for each of the following functions:
(a) $f(x)=\left(x^{2}-1\right)$,
(b) $\sqrt{3 x^{3}-4 x+1}$
(c) $\sqrt{\sin \left(3 x^{2}\right)}$
4. Using differentials, estimate $\cos (.05)$.
5. If the width of a rectangle is changing at a rate of twice its length and its length is changing at a rate of $+5 \mathrm{~cm} / \mathrm{sec}$, then at what rate is the area of the rectangle changing?
6. Consider the function

$$
f(x)=x^{3}-x^{2}-x+2, \quad-2 \leq x \leq 4
$$

(a) Determine the intervals where f is increasing and where it decreases.
(b) Determine the critical points for the function.
(c) Determine the intervals where f is concave up and where it is concave down.
(d) Specify which points are local maxima, local minima, or inflection points.
(e) Sketch a graph of f using the information determined above.
7. Evaluate each of the antiderivatives:
(a) $\left(2 x^{2}-3\right)\left(x^{2}+2 x\right)$
(b) $x \sqrt{3-x^{2}}$
(c) $\tan (x) \sec (x)$
8. Calculate the following definite integrals:
(a) $\int_{0}^{2}\left(x^{2}-1\right)^{2} d x$
(b) $\int_{0}^{1} x \sqrt{3-x^{2}} d x$
9. Compute the area bounded by the curves $y=x^{2}-2$ and $2 x^{2}+x-4$.
10. Compute the volume of revolution about the axis of the curve

$$
y=x^{2}-2 x, \quad 1 \leq x \leq 2
$$

