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A Characterization of  the Interpolation Spaces 
of  H ~ and L ~176 on the Line 

Robert Sharpley 

Abstract. The Calder6n-Mitjagin theorem characterizes all interpolation spaces 
of the pair of Lebesgue spaces (L ~, L ~) as the rearrangement-invariant spaces. 
The results of this paper show that the interpolation spaces of Ht(R) and L~176 
consist of elements whose nontangential maximal functions lie in rearrangement- 
invariant spaces. 

Let Xo and X, be two Banach spaces which are continuously embedded in a 
common Hausdort t  topological vector space. An admissible operator for the pair 
(Xo, X,)  is a linear operator whose domain contains the union of the two spaces 
and whose restrictions to Xi is a bounded operator  on Xi ( i = 0 ,  1). A space X 
is called an interpolation space for the pair (Xo, X,)  if each admissible operator 
T is bounded on X. 

For a measurable function ~ let r  denote its nonincreasing rearrangement 
(see [4] or [2] for details). In [4] Calder6n showed that the interpolation spaces 
o f L  ~ and L ~ are characterized in terms of a quasi-order < (the Hardy-Li t t lewood-  
P61ya relation) involving the rearrangements r 

Io (1) ~0<~ := ~*(s) ds ~o*(s) ds, all t > 0 .  

In fact, Calder6n showed that a necessary and sufficient condition for ~0 < ~o to 
hold is that there exists an admissible operator  T for ( L  1, Lee), with respective 
operator norms one, such that T~ = ~. The interpolation spaces X are spaces of  
measurable functions whose norm II" ]Ix satisfies the condition 

(2) ~b<~ ~ II 'llx---II tlx- 
The Peetre K-functional for (Xo, X~) is defined by 

K(f ,  t; So,  X , ) :=  inf{[IfollXo + tilT, [Ix,: f=fo+f ,}  

where the infimum is taken over all decomposit ions of  f=fo+f~ with f~ ~ X~ 
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(i = 0, 1). Peetre proved that 

fo K(r  t; L I, L ~) = r  ds 

and so (2) may be reformulated in terms of  the K-functional for the pair. A pair 
(Xo, X~) is called a Calder6n couple if the condition 

K ( g , t ) < - K ( f , t ) ,  all t > 0  

implies the existence of an admissible operator  T (whose norm depends only on 
the spaces Xo and X~) such that 

T f = g .  

Brudnyi and Krugljak [3] have shown that the interpolation spaces of a Calder6n 
couple (Xo, X~) are exactly the spaces Y (up to equivalent renorming) such that 

(3) Ilfll Y = ~ ( K ( f , .  )), 

where �9 is an admissible function norm. In fact, it has been proven in [1] that 
this follows from the "fundamental  lemma" of  the K-method [6] and a lemma 
of Lorentz and Shimogaki concerning the quasi-order <.  We show that a com- 
plementary lemma, also due to Lorentz an d  Shimogaki, plays a critical role in 
establishing that (H  ~, L ~) is a Calder6n couple. In[11]  Peter Jones utilized his 
constructive solutions of a equations with Carleson measure data to show that 
( H  ~, H ~) is a Calder6n couple. The general pattern of  our proof  follows that in 
[11] but has some noticeable differences and simplifications. This is partly due 
to the fact that the replacement of  H a by L ~ relaxes the analyticity requirement. 
In [9] Janson and Jones investigated, among other things, the complex method 
for the pair (H  ~, L ~) and employ similar techniques to this paper. 

Let R denote the real line and U = {(x, y):  y > 0}, the upper half plane. Let the 
function f belong to L~(R)+L~(R). We use the symbol f also to denote the 
harmonic extension o f f  to U, 

f ( x ,  y) = P~. * f ( x ) ,  

where Py is the Poisson kernel and * denotes convolution on R. For x ~ R, denote 
by Fx := {(t, y) e U: Ix - t[ - y} the cone with vertex at x. The nontangential maximal 
function o f f  is defined by Nf(x) := sup{If(z, Y)[: (z, y) ~ Fx}. There are several 
equivalent norms for the Hardy space H ~. We shall use 

(4) llfll H' := It NTII L'. 

An H ~-atom, or in short an atom, for an interval I is any function al which satisfies 

(5) f a,=O, la, t~lll-'x,. 
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Co i fman  [5] has provided an " a t o m i c "  descr ip t ion  of  H I :  

H ' = { f :  f=~.  Aja , , ,~ lAj]<~ }, 
J J 

where the a b are atoms. Moreover ,  it was shown  that  

(6) ][ f l lH '~ l l f l lHL:=in f{~ lAj l : f=~Ajar} ,  
J J 

where  ~o -- ~, means  that  there exist posi t ive constants  el and c2 such that  c ~  -< ff -< 
c2~. The last expression in inequali ty (6) is usual ly  referred to as the atomic H l 
norm.  In [13] a s imple p r o o f  of  (6) is p resen ted  and it is shown that  

I/ (7) g ( f ,  t)= K( f ,  t; H ~, L ~) ~ (Nf)*(s)  ds, t> O. 

A similar  result in terms of  the grand max ima l  ope ra to r  was obta ined  earlier in 
[7], but  the est imate (7) is bet ter  suited for  our  purposes .  

Theorem 1. The pair ( H I ( R ) ,  L~(R))  is a Calderdn couple; that is, i f  Ng < Nf, 
then there exists a linear operator T such that the conditions 

(i) Tf=g,  

(8) (ii) ]]Thllu,<-cHh]l.,, h ~ H  l, 

(iii) ]]Thl]L~<--cIIh]]L~, h ~ L  ~, 

hold. The constant c is independent of  f and g. 

The definit ion of  the H l no rm (4) shows that  H * consists o f  functions f for 
which N f  belongs to L I. It is also clear that  L ~176 is compr i sed  of  functions f such 
that  N f  belongs  to L ~. I f  X is a rea r rangement - invar ian t  space,  then N ( X )  is 
defined as the space of  functions for which the norm 

I]fl] N(X) := [] Nf]lx 
is finite. The  question natural ly arises as to whe ther  the interpolat ion spaces for  
N ( L  ~) and N ( L  ~ are precisely the spaces N ( X ) .  The next result answers this 
in the affirmative. 

Corol lary 2. I f  X is a rearrangement-invariant space, then N ( X )  is an inter- 
polation space for (H~(R),  L~ Conversely, i f  Y is an interpolation space for 
(H~(R) ,  L~ then there exists a unique rearrangement-invariant space X such 
that Y = N ( X )  with equivalent norms. 

In order  to construct  the desired ope ra to r  T satisfying the propert ies  (8), we 
first a ssume that  g satisfies the condi t ion 

(9) lim ( Ng)*( t) = O. 
t ~ o o  

Let O, denote  the open set { N g > 2 " } .  Define 

(10) g. := Y~ [ g -  I(g)]xt ,  
I ~ ~ ' .  
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where ~g. is the collection of all components of  0 .  and l(g) denotes the average 
[II -~ Sig of  g over the interval I. It is easy to see that 

(11) lim g. = g  almost everywhere 
n ~ - o o  

by using the following basic estimate for averages in terms of  the nontangential 
maximal operator (see inequality (3) of  [13] and its proof): 

(12) lI(g)l-< 7 max Ng(x). 
x ~ O l  

Indeed, since g belongs to H~+ L ~176 and satisfies (9), the measure of O, is finite 
and O, TR as n~-o0.  By inequality (12) it follows that, for I ~  cr there holds 
[I(g)l -< 7- 2". Hence 

(13) [g-g.l=lgxo~+ ~ l (g )x , l<7  "2" 
I ~ .  

which converges to 0 as n - ~ - ~  and so (11) holds. 
Our plan is to construct operators T =  7", so that (8) holds with the approxima- 

tions g, replacing g and with uniform operator bounds. Using a limiting argument 
we obtain an operator T to establish similar results for functions g in H * +  L ~176 
which satisfy condition (9). Finally, we remove this last restriction to obtain the 
general case. 

For each integer k define 

(14) ak := gk -- gk+l, 

then it follows by telescoping the sum that 

(15) g= ~ ak. 
k ~ - o o  

The first result indicates the connection of  this decomposition with the Peetre 
K-functional. 

Suppose that g satisfies (9) and the functions ak are chosen as in (14), 

(16) K ( g , t )  < - ~ min(llakllH,,tllakllL~)~cK(g,t), t>0 .  
k =--r 

Proof.  The left-hand inequality follows since K ( . ,  t) is a norm and by the 
definition of  the K-functional. For the right-hand inequality, let I be any interval 
in Cgk. Define the collection of  intervals cr := {J ~ q~k+~: J c I} and the set G(I) 
by G ( I ) : =  I\Ok+l. Next set 

(17) bl := agxt =gxc ( I )+  Y. J (g )x j - I (g )x~ ,  
J ~  ~ t  

then bt satisfies S b~ =0  and, by inequality (12), 

]b,[<--2kx~(t)+7"2 k+' • Xj+7"2kx,-----21"2kx,. 
J ~  ~ !  

Hence 

(18) l l ak l l , ~  < - 2 1  - 2 k 

Theorem 3. 
then 
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and 

(19) Ila~ll.'<-cllak[t.'~,<-c2 k E IIl<-c2~tokl 

since b,/(21 �9 2kllI) is a n  H 1 atom. By these two estimates we see that i f j  is an 
integer selected so that U-~< (Ng)*(t)~ 2 j, then 

min(llakllH',tllakllL| ~ 2kmin(lOkl, t) 
k = - -  r  k = - c.,o 

=C{~=j2klOkl +t kJ~j~ 2k } 

~ k 

- -  k 
= j  

Io ~-c (Ng)*~--cK(g,t). 

In the fourth line we used summation by parts and the fact that Ng > 2 k on the 
set Ok\Ok+~. �9 

Remark 4. Theorem 3 is actually implicit in the proof  given in [13] and may 
be regarded as an explicit decomposition for Cwikel's version of the fundamental 
lemma in the theory of the real method of interpolation [6]. The proof  is included 
for completeness. 

At this stage of the proof we fix n and, for notational convenience, set r := g,; 
that is, we first construct an operator for ~ and will pass to the limit at a later 
stage. Rather than write this function in the form of the atomic decomposition 
(see (17)) 

(20) ~ =  '~" Y~ b,, 
k = n  I~C~t~  

we utilize a stopping time argument to telescope the b~'s locally to scalar multiples 
of atoms with additional nice properties. We construct recursively a subcollection 
(~ of U n  c~ (~k in the following way. Begin by placing all the intervals from qg, into 
~g. Next we perform the following recursive step for each interval I which has 
previously been placed in ~: 

Define the integer re(I) by m(l):= min{k: IOk n ll<--�89 and c~(I ) to  
be the collection of components of  O,,(t)c~ I. Add all intervals J from 
cg(I) to the collection ~g. 

Let F(I)c I be defined by 

(21) F(I):=I\ U J=I\Om(,), 



2O4 

then (Ng)xF(~)--<2 "(~). Note that the F ( I ) ' s  are disjoint and 

O. = I..3 F ( I ) .  
l~C~ 

In analogy with the decomposition (17) we define 

(22) gt:=(~-a(I))xF(t)+ ~ a(J)x~:(s), 
J ~ ( l )  

where 
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r 
(23) a(I) := IF(I)] -~ ~, g, I E cr 

Notice that gl is supported in I and that 

(24, f g ' = f F  ~~ a~ ~ f j ~ = 0 .  
( t )  t J ~ ( t )  

Moreover, the recursive criteria guarantee that 

(25) If(t)l~lzl/2. 
Recall that for each I E c~k there is an lo ~ ~. (the ancestor of I) which contains 
I and so by inequality (12) we have 

In (I)1 ~ 21l(g)l--- 2(lI(g)l + tlo(g)l) 
---2(7.2k+7 �9 2")-----28" 2 k. 

It follows that 

(26) Ig, I--- 28- 2"(')XE(,) 
if E(I) is defined as the disjoint union of F(I) with those at the next level 

U (27) E(I):=F(I) (j~v,(,, F ( J ) ) .  

Now E(I) r I and at most two of them overlap 

(28) ~ Xe(1)<-- 2 

since the F ( I ) ' s  are disjoint. As a consequence, we may write 

(29) r  Y gl(x), 
1r 

where for each x there are at most two nonzero terms in the sum. The sum in 
(29) is our desired decomposition of r It follows that 

(30) IIg, I1. '-  c2"'"111 
since the function (281II2"(t))-~gl is an H~-atom by the estimates (24) and (26). 
Define 

(31) if:= Y: 2"(I)XFtI), 
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then, obviously, 

Ng_<~ on On. 

Conversely, the next result shows that ff is controlled by Ng. In order to 
establish this result we will need the notion of the "median" of a function Ih[ 
over an interval I: 

rn,(h) := inf{A : I{Iht > A) • I] _< �89 

and the corresponding maximal operator ~nh defined by 

~h(x)  := sup rnl( h ). 

From the definitions it is clear that 

{x: ~nh(x) > A } = {x: M(X{Ihl>x})(x) > �89 

where M denotes the Hardy-Littlewood maximal operator. As was pointed out 
in [10], it follows that 

[{~nh > h }1 -< 3 (�89 IIx{ihl>~ }!1L' = 61{I h i >  A }1, 

since M is weak type (1, 1). Hence the corresponding decreasing rearrangements 
must satisfy 

(32) (~h)*(t)  -< h*(t/6).  

Proposition 5. I f  ~, is defined by equation (31), then 

(33) (~,)*(t)<-2(Ng)*(t/6), t > 0 .  

Hence, if Ng < Nf, then 

(34) g < cNfi 

Proof. Inequality (33) follows immediately from inequality (32) and the fact 
that 4 -  < 2~(Ng).  Relation (34) follows by changing variables. �9 

By (34) a variant (see Corollary V.10.5 of [2]) of a decomposition lemma of 
Lorentz and Shimogaki [ 12] for the quasi-order < implies the existence of pairwise 
disjoint sets { /~(I)} ,~ such that I/~(I)l = IF(I)I and 

(35) 2 f N(f)>-IF(I)I2 m('), I ~ ~. 
J 

There exists a Borel measurable function ~ : R ~ U  (~(x)~Fx)  such that 
If(C,(x))l  >-�89 so 

(36) 4 [ If(~,(s))l ds>-IF(Z)12 m`'), Z~ ~. 
d 

Define the unimodular function w(x) := sgnf(~b(x)) and the weights w(I) so that 

(37) w(I) f [f(~,(s))l ds = 1112 "~'', 
d 

then inequalities (36) and (25) show that the w(I) are uniformly bounded with 
a bound independent of the functions f and g- 
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Lemma 6. 
the linear functionals AI are defined by 

f~ h(~b(sl)o~(s) ds 
(38) At(h):= (i) 1i[2m(,) , I ~  ~, 

then the operator T defined by 

(39) Th(x):= E w(I)A, (h)g , (x )  
i~cr 

satisfies the conditions (8) but with Tf  = g. 

Proof. By equation (37) we have that w(/)At ( f )  = 1 and so equation (29) implies 
that Tf= g. By inequality (30), the facts that the E ( I ) ' s  are disjoint, and O(s) 
belongs to Fs it follows that 

(40) IlThHH,-<c ~ [ Ih(~b(s))l ds<-c f Nh(s)ds.  
d 

Hence T satisfies part (ii) of (8). 
Suppose now that h belongs to L ~, then by inequality (26) and the fact that 

[E(I)I  = I f ( I ) t  <-III we have that 

1Th(x)]-< c E IA,(h)[2m'"XE(,)(x) 

<- cllhtlL | E X ~ . ,  <- clIh[IL ~ 
iE~g  

holds. The last inequality follows from inequality (28). Hence T satisfies the 
estimate (iii) of  (8) and the lemma is established. �9 

Lemma 7. Suppose now that g satisfies condition (9) and Ng < Nf, then there 
exists an admissible operator T such that T f  = g. 

Proof. We use Lemma 6 to produce a sequence of  operators Tn such that 
Tnf = gn. The Tn's have uniformly bounded operator  norms on H ~ and L ~ which 
are independent of n, f, and g. Recall that the functions g~ are defined in (10). 
We employ Calder6n's technique [4] to supply the limit operator T with the 
desired properties (8). Let y be a Banach limit. Suppose that h belongs to H ~ + L ~. 
For each measurable set E of finite measure, let 

then v is absolutely continuous with respect to Lebesgue measure on R. Hence 
there exists a locally integrable function Th such that 

f e  = v ( E )  
Th 

for each set E of  finite measure. It follows by the continuity of y that 

(41) Py * r h ( t )  = y({P,  * r~h ( t ) } -~_ , ) .  

R. Sharpley 

Suppose that Ng < N f  and ~ is defined as the gn in equation (10). I f  
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In particular,  equation (41) holds with (t, y)  = g,(x) where ~ is an arbitrary Borel 
measurable  function from R to U with O(x )~  F~. So for  each set E o f  finite 
measure it follows that 

E n = - I  

<-- c (Nh)*(s)  ds, 
,10 

since 3, is a positive linear functional on l ~. Hence  

N ( T h )  < cNh. 

By this last fact, the definition o f  Th and equat ion  (11) it follows that T satisfies 
the desired properties. �9 

Proof  of  Theorem 1. Suppose that f ~  H ~ + L ~ and Ng < Nf. In view of  Lemma 
7 we may assume that 

lim ( Ng)*( t)=: a > 0 ,  

since this is the only case that remains to be proved.  Observe that 

a -< lira -< lira - lim (Nf)*( t ) ,  
t~ee l t ~ m  t t~co 

since both integrands are nonincreasing.  Hence  there exist sets E 1 c f 2 c �9 �9 �9 of  
finite measure increasing to co and a Borel measurable  function 0 : R +  U such 
that 0 (x )  ~ Fx and 

I/(~,(x))l>~ for  x e  CJ Fj. 
j = l  

Let 3' be a Banach limit and define the l inear funct ional  A by 

({ ; A(h) :=  y IFjI-' h(~(s))oa(s) ds , 
Fj j=l 

where ~o(s) := sgnf ( f f ( s ) ) .  Now 3' is a Banach limit so it follows that 

- -  h co oo l a (h) l<  3'({11 IlL }j=,)= Ilhll,. ~ (42) 

and 

(43) a(f)->�89 

Next select the largest integer no such that  

2 % ~ o t  ~ 2  %+1.  
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Let g,o be defined as in (10) and set b,o:= g-g~o. Now g~o satisfies the hypothesis 
of  Lemma 6 so there exists an admissible operator  To such that 

(44) Tof = g~o . 

For the portion b, o of g we define the operator  T~ by 

�9 A ( h )  
Tlh(x).=~-(-~b,o, h ~ H l + L  ~, 

then T~f= b~ o. By inequalities (42), (43), and (13) it follows that 

[] Tihl]L ~<- 1411hilL ~. 

Moreover, A vanishes on H ~. To verify this, note that Nh is integrable and so 
]Fi] -~ J~ Nh --~ 0 as j ~ ~ .  But 3' was chosen to take convergent sequences to their 
limits. Consequently, T~ is trivially bounded on H ~. The operator T:= To+ T~ 
fulfills the statement of the theorem. �9 

Proof of Corollary 2. The fact that N ( X )  is an interpolation space is straightfor- 
ward since the estimate (7) holds and 

K(Tf,  t )<-cK( f , t ) ,  t > 0 ,  

for all admissible operators T. For the converse, the Brudnyi-Krugljak theory 
asserts that Theorem 1 is enough to guarantee that the interpolation spaces Y of 
( H  ~, L ~ arise as spaces generated by function norms d~y applied to the K- 
functional: 

with constants independent of  the functions f. Define the norm 

and X as the rearrangement-invariant space of  functions for which this norm is 
finite. It follows that Y = N ( X )  with equivalent norms. �9 
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