Constr. Approx. (1988) 4: 199-209

A Characterization of the Interpolation Spaces of H^1 and L^{∞} on the Line

Robert Sharpley

Abstract. The Calderón-Mitjagin theorem characterizes all interpolation spaces of the pair of Lebesgue spaces (L^1, L^∞) as the rearrangement-invariant spaces. The results of this paper show that the interpolation spaces of $H^1(\mathbf{R})$ and $L^\infty(\mathbf{R})$ consist of elements whose nontangential maximal functions lie in rearrangement-invariant spaces.

Let X_0 and X_1 be two Banach spaces which are continuously embedded in a common Hausdorff topological vector space. An *admissible operator* for the pair (X_0, X_1) is a linear operator whose domain contains the union of the two spaces and whose restrictions to X_i is a bounded operator on X_i (i=0, 1). A space X is called an *interpolation space* for the pair (X_0, X_1) if each admissible operator T is bounded on X.

For a measurable function φ let φ^* denote its nonincreasing rearrangement (see [4] or [2] for details). In [4] Calderón showed that the interpolation spaces of L^1 and L^∞ are characterized in terms of a quasi-order < (the Hardy-Littlewood-Pólya relation) involving the rearrangements φ^* :

(1)
$$\psi < \varphi := \int_0^t \psi^*(s) \, ds \leq \int_0^t \varphi^*(s) \, ds, \quad \text{all} \quad t > 0.$$

In fact, Calderón showed that a necessary and sufficient condition for $\psi < \varphi$ to hold is that there exists an admissible operator T for (L^1, L^{∞}) , with respective operator norms one, such that $T\varphi = \psi$. The interpolation spaces X are spaces of measurable functions whose norm $\|\cdot\|_X$ satisfies the condition

(2)
$$\psi < \varphi \Rightarrow \|\psi\|_X \le \|\varphi\|_X$$

The Peetre K-functional for (X_0, X_1) is defined by

$$K(f, t; X_0, X_1) \coloneqq \inf\{\|f_0\|_{X_0} + t\|f_1\|_{X_1}: f = f_0 + f_1\}$$

where the infimum is taken over all decompositions of $f = f_0 + f_1$ with $f_i \in X_i$

Date received: July 11, 1986. Date revised: June 23, 1987. Communicated by Jaak Peetre. AMS classification: 30D55, 47B38.

Key words and phrases: Hardy spaces, Nontangential maximal function, Interpolation spaces.

R. Sharpley

(i=0, 1). Peetre proved that

$$K(\varphi, t; L^1, L^\infty) = \int_0^t \varphi^*(s) \, ds$$

and so (2) may be reformulated in terms of the K-functional for the pair. A pair (X_0, X_1) is called a *Calderón couple* if the condition

$$K(g, t) \leq K(f, t), \quad all \quad t > 0$$

implies the existence of an admissible operator T (whose norm depends only on the spaces X_0 and X_1) such that

Tf = g.

Brudnyi and Krugljak [3] have shown that the interpolation spaces of a Calderón couple (X_0, X_1) are exactly the spaces Y (up to equivalent renorming) such that

$$\|f\|_{Y} = \Phi(K(f, \cdot)),$$

where Φ is an admissible function norm. In fact, it has been proven in [1] that this follows from the "fundamental lemma" of the K-method [6] and a lemma of Lorentz and Shimogaki concerning the quasi-order <. We show that a complementary lemma, also due to Lorentz and Shimogaki, plays a critical role in establishing that (H^1, L^{∞}) is a Calderón couple. In [11] Peter Jones utilized his constructive solutions of $\bar{\partial}$ equations with Carleson measure data to show that (H^1, H^{∞}) is a Calderón couple. The general pattern of our proof follows that in [11] but has some noticeable differences and simplifications. This is partly due to the fact that the replacement of H^{∞} by L^{∞} relaxes the analyticity requirement. In [9] Janson and Jones investigated, among other things, the complex method for the pair (H^1, L^{∞}) and employ similar techniques to this paper.

Let **R** denote the real line and $U = \{(x, y): y > 0\}$, the upper half plane. Let the function f belong to $L^1(\mathbf{R}) + L^{\infty}(\mathbf{R})$. We use the symbol f also to denote the harmonic extension of f to U,

$$f(x, y) = P_y * f(x),$$

where P_y is the Poisson kernel and * denotes convolution on **R**. For $x \in \mathbf{R}$, denote by $\Gamma_x := \{(t, y) \in \mathbf{U}: |x - t| \le y\}$ the cone with vertex at x. The nontangential maximal function of f is defined by $Nf(x) := \sup\{|f(z, y)|: (z, y) \in \Gamma_x\}$. There are several equivalent norms for the Hardy space H^1 . We shall use

(4)
$$||f||_{H^1} \coloneqq ||Nf||_{L^1}.$$

An H^1 -atom, or in short an atom, for an interval I is any function a_1 which satisfies

(5)
$$\int a_I = 0, \quad |a_I| \le |I|^{-1} \chi_I.$$

Coifman [5] has provided an "atomic" description of H^1 :

$$H^{1} = \left\{ f: f = \sum_{j} \lambda_{j} a_{I_{j}}, \sum_{j} |\lambda_{j}| < \infty \right\},$$

where the a_{I_i} are atoms. Moreover, it was shown that

(6)
$$\|f\|_{H^1} \sim \|f\|_{H^{\frac{1}{a_i}}} \coloneqq \inf\left\{\sum_j |\lambda_j| \colon f = \sum_j \lambda_j a_{I_j}\right\},$$

where $\varphi \sim \psi$ means that there exist positive constants c_1 and c_2 such that $c_1\varphi \leq \psi \leq c_2\varphi$. The last expression in inequality (6) is usually referred to as the atomic H^1 norm. In [13] a simple proof of (6) is presented and it is shown that

(7)
$$K(f, t) = K(f, t; H^{1}, L^{\infty}) \sim \int_{0}^{t} (Nf)^{*}(s) ds, \quad t > 0.$$

A similar result in terms of the grand maximal operator was obtained earlier in [7], but the estimate (7) is better suited for our purposes.

Theorem 1. The pair $(H^1(\mathbf{R}), L^{\infty}(\mathbf{R}))$ is a Calderón couple; that is, if Ng < Nf, then there exists a linear operator T such that the conditions

(1)
$$If = g,$$

(8) (ii) $||Th||_{H^1} \le c ||h||_{H^1}, \quad h \in H^1,$
(iii) $||Th||_{L^{\infty}} \le c ||h||_{L^{\infty}}, \quad h \in L^{\infty},$

-

...

hold. The constant c is independent of f and g.

The definition of the H^1 norm (4) shows that H^1 consists of functions f for which Nf belongs to L^1 . It is also clear that L^{∞} is comprised of functions f such that Nf belongs to L^{∞} . If X is a rearrangement-invariant space, then N(X) is defined as the space of functions for which the norm

$$\|f\|_{N(X)} \coloneqq \|Nf\|_X$$

is finite. The question naturally arises as to whether the interpolation spaces for $N(L^1)$ and $N(L^{\infty})$ are precisely the spaces N(X). The next result answers this in the affirmative.

Corollary 2. If X is a rearrangement-invariant space, then N(X) is an interpolation space for $(H^1(\mathbf{R}), L^{\infty}(\mathbf{R}))$. Conversely, if Y is an interpolation space for $(H^1(\mathbf{R}), L^{\infty}(\mathbf{R}))$, then there exists a unique rearrangement-invariant space X such that Y = N(X) with equivalent norms.

In order to construct the desired operator T satisfying the properties (8), we first assume that g satisfies the condition

(9)
$$\lim_{t \to \infty} (Ng)^*(t) = 0.$$

Let O_n denote the open set $\{Ng > 2^n\}$. Define

(10) $g_n \coloneqq \sum_{I \in \mathscr{C}_n} [g - I(g)] \chi_I,$

where \mathscr{C}_n is the collection of all components of O_n and I(g) denotes the average $|I|^{-1} \int_I g$ of g over the interval I. It is easy to see that

(11)
$$\lim_{n \to -\infty} g_n = g \text{ almost everywhere}$$

by using the following basic estimate for averages in terms of the nontangential maximal operator (see inequality (3) of [13] and its proof):

$$(12) |I(g)| \le 7 \max_{x \in \partial I} Ng(x).$$

Indeed, since g belongs to $H^1 + L^{\infty}$ and satisfies (9), the measure of O_n is finite and $O_n \uparrow \mathbb{R}$ as $n \downarrow -\infty$. By inequality (12) it follows that, for $I \in \mathscr{C}_n$, there holds $|I(g)| \leq 7 \cdot 2^n$. Hence

(13)
$$|g-g_n| = |g\chi_{O_n} + \sum_{I \in \mathscr{C}_n} I(g)\chi_I| \le 7 \cdot 2^n$$

which converges to 0 as $n \rightarrow -\infty$ and so (11) holds.

Our plan is to construct operators $T = T_n$ so that (8) holds with the approximations g_n replacing g and with uniform operator bounds. Using a limiting argument we obtain an operator T to establish similar results for functions g in $H^1 + L^{\infty}$ which satisfy condition (9). Finally, we remove this last restriction to obtain the general case.

For each integer k define

(14)

$$a_k \coloneqq g_k - g_{k+1},$$

then it follows by telescoping the sum that

(15)
$$g = \sum_{k=-\infty}^{\infty} a_k.$$

The first result indicates the connection of this decomposition with the Peetre K-functional.

Theorem 3. Suppose that g satisfies (9) and the functions a_k are chosen as in (14), then

(16)
$$K(g,t) \leq \sum_{k=-\infty}^{\infty} \min(\|a_k\|_{H^1}, t\|a_k\|_{L^{\infty}}) \leq cK(g,t), \quad t > 0.$$

Proof. The left-hand inequality follows since $K(\cdot, t)$ is a norm and by the definition of the K-functional. For the right-hand inequality, let I be any interval in \mathscr{C}_k . Define the collection of intervals $\mathscr{C}_I := \{J \in \mathscr{C}_{k+1} : J \subset I\}$ and the set G(I) by $G(I) := I \setminus O_{k+1}$. Next set

(17)
$$b_I \coloneqq a_k \chi_I = g \chi_{G(I)} + \sum_{J \in \mathscr{C}_I} J(g) \chi_J - I(g) \chi_I,$$

then b_l satisfies $\int b_l = 0$ and, by inequality (12),

$$|b_{I}| \leq 2^{k} \chi_{G(I)} + 7 \cdot 2^{k+1} \sum_{J \in \mathscr{C}_{I}} \chi_{J} + 7 \cdot 2^{k} \chi_{I} \leq 21 \cdot 2^{k} \chi_{I}.$$

Hence

$$\|a_k\|_{L^{\infty}} \leq 21 \cdot 2^k$$

and

(19)
$$||a_k||_{H^1} \le c ||a_k||_{H^1_{a_l}} \le c 2^k \sum_{I \in \mathscr{C}_k} |I| \le c 2^k |O_k|$$

since $b_I/(21 \cdot 2^k |I|)$ is an H^1 atom. By these two estimates we see that if j is an integer selected so that $2^{j-1} < (Ng)^*(t) \le 2^j$, then

$$\sum_{k=-\infty}^{\infty} \min(\|a_k\|_{H^1}, t\|a_k\|_{L^{\infty}}) \le c \sum_{k=-\infty}^{\infty} 2^k \min(|O_k|, t)$$
$$= c \left\{ \sum_{k=j}^{\infty} 2^k |O_k| + t \sum_{k=-\infty}^{j-1} 2^k \right\}$$
$$\le c \left\{ \sum_{k=j}^{\infty} (2^{k+1} - 2^k) |O_k| + t 2^j \right\}$$
$$\le c \left\{ \int_{O_j} Ng + t 2^j \right\}$$
$$\le c \int_{0}^{t} (Ng)^* \le c K(g, t).$$

In the fourth line we used summation by parts and the fact that $Ng > 2^k$ on the set $O_k \setminus O_{k+1}$.

Remark 4. Theorem 3 is actually implicit in the proof given in [13] and may be regarded as an explicit decomposition for Cwikel's version of the *fundamental lemma* in the theory of the real method of interpolation [6]. The proof is included for completeness.

At this stage of the proof we fix n and, for notational convenience, set $\bar{g} := g_n$; that is, we first construct an operator for \bar{g} and will pass to the limit at a later stage. Rather than write this function in the form of the atomic decomposition (see (17))

(20)
$$\bar{g} = \sum_{k=n}^{\infty} \sum_{I \in \mathscr{C}_k} b_I,$$

we utilize a stopping time argument to telescope the b_I 's locally to scalar multiples of atoms with additional nice properties. We construct recursively a subcollection \mathscr{C} of $\bigcup_n^{\infty} \mathscr{C}_k$ in the following way. Begin by placing all the intervals from \mathscr{C}_n into \mathscr{C} . Next we perform the following *recursive step* for each interval I which has previously been placed in \mathscr{C} :

Define the integer m(I) by $m(I) \coloneqq \min\{k: |O_k \cap I| \le \frac{1}{2}|I|\}$ and $\mathscr{C}(I)$ to be the collection of components of $O_{m(I)} \cap I$. Add all intervals J from $\mathscr{C}(I)$ to the collection \mathscr{C} .

Let $F(I) \subset I$ be defined by

(21)
$$F(I) \coloneqq I \setminus \bigcup_{J \in \mathscr{C}(I)} J = I \setminus O_{m(I)},$$

R. Sharpley

then $(Ng)\chi_{F(I)} \leq 2^{m(I)}$. Note that the F(I)'s are disjoint and

$$O_n = \bigcup_{I \in \mathcal{C}} F(I).$$

In analogy with the decomposition (17) we define

(22)
$$g_I \coloneqq (\bar{g} - \alpha(I))\chi_{F(I)} + \sum_{J \in \mathscr{C}(I)} \alpha(J)\chi_{F(J)},$$

where

(23)
$$\alpha(I) := |F(I)|^{-1} \int_{I} \bar{g}, \qquad I \in \mathscr{C}.$$

Notice that g_I is supported in I and that

(24)
$$\int g_I = \int_{F(I)} \overline{g} - \int_I \overline{g} + \sum_{J \in \mathscr{C}(I)} \int_J \overline{g} = 0.$$

Moreover, the recursive criteria guarantee that

$$|F(I)| \ge |I|/2.$$

Recall that for each $I \in \mathscr{C}_k$ there is an $I_0 \in \mathscr{C}_n$ (the ancestor of I) which contains I and so by inequality (12) we have

$$|\alpha(I)| \le 2|I(\bar{g})| \le 2(|I(g)| + |I_0(g)|)$$

 $\le 2(7 \cdot 2^k + 7 \cdot 2^n) \le 28 \cdot 2^k.$

It follows that

(26)
$$|g_I| \le 28 \cdot 2^{m(I)} \chi_{E(I)}$$

if E(I) is defined as the disjoint union of F(I) with those at the next level

(27)
$$E(I) \coloneqq F(I) \cup \left(\bigcup_{J \in \mathscr{C}(I)} F(J)\right).$$

Now $E(I) \subset I$ and at most two of them overlap

(28)
$$\sum_{I \in \mathscr{C}} \chi_{E(I)} \leq 2$$

since the F(I)'s are disjoint. As a consequence, we may write

(29)
$$\bar{g}(x) = \sum_{I \in \mathscr{C}} g_I(x),$$

where for each x there are at most two nonzero terms in the sum. The sum in (29) is our desired decomposition of \bar{g} . It follows that

(30)
$$\|g_I\|_{H^1} \le c2^{m(I)}|I|$$

since the function $(28|I|2^{m(I)})^{-1}g_i$ is an H^1 -atom by the estimates (24) and (26). Define

(31)
$$\tilde{g} \coloneqq \sum_{I \in \mathscr{C}} 2^{m(I)} \chi_{F(I)},$$

then, obviously,

$$Ng \leq \tilde{g}$$
 on O_n .

Conversely, the next result shows that \tilde{g} is controlled by Ng. In order to establish this result we will need the notion of the "median" of a function |h| over an interval I:

$$m_I(h) \coloneqq \inf\{\lambda : |\{|h| > \lambda\} \cap I| \leq \frac{1}{2}|I|\}$$

and the corresponding maximal operator mh defined by

$$mh(x) \coloneqq \sup_{I \ni x} m_I(h)$$

From the definitions it is clear that

$$\{x: mh(x) > \lambda\} = \{x: M(\chi_{\{|h| > \lambda\}})(x) > \frac{1}{2}\},\$$

where M denotes the Hardy-Littlewood maximal operator. As was pointed out in [10], it follows that

$$|\{mh > \lambda\}| \leq 3(\frac{1}{2})^{-1} \|\chi_{\{|h| > \lambda\}}\|_{L^{1}} = 6|\{|h| > \lambda\}|,$$

since M is weak type (1, 1). Hence the corresponding decreasing rearrangements must satisfy

(32)
$$(mh)^*(t) \le h^*(t/6)$$

Proposition 5. If \tilde{g} is defined by equation (31), then

(33)
$$(\tilde{g})^*(t) \le 2(Ng)^*(t/6), \quad t > 0$$

Hence, if Ng < Nf, then

$$(34) \qquad \qquad \tilde{g} < cNf.$$

Proof. Inequality (33) follows immediately from inequality (32) and the fact that $\tilde{g} \leq 2m(Ng)$. Relation (34) follows by changing variables.

By (34) a variant (see Corollary V.10.5 of [2]) of a decomposition lemma of Lorentz and Shimogaki [12] for the quasi-order \prec implies the existence of pairwise disjoint sets $\{\tilde{E}(I)\}_{I \in \mathscr{C}}$ such that $|\tilde{E}(I)| = |F(I)|$ and

(35)
$$2 \int_{\tilde{E}(I)} N(f) \ge |F(I)| 2^{m(I)}, \quad I \in \mathscr{C}$$

There exists a Borel measurable function $\psi: \mathbf{R} \to \mathbf{U}$ $(\psi(x) \in \Gamma_x)$ such that $|f(\psi(x))| \ge \frac{1}{2}Nf(x)$, so

(36)
$$4 \int_{\tilde{E}(I)} |f(\psi(s))| \, ds \ge |F(I)| 2^{m(I)}, \qquad I \in \mathscr{C}.$$

Define the unimodular function $\omega(x) \coloneqq \operatorname{sgn} f(\psi(x))$ and the weights w(I) so that

(37)
$$w(I) \int_{\tilde{E}(I)} |f(\psi(s))| \, ds = |I| 2^{m(I)},$$

then inequalities (36) and (25) show that the w(I) are uniformly bounded with a bound independent of the functions f and \overline{g} .

Lemma 6. Suppose that Ng < Nf and \bar{g} is defined as the g_n in equation (10). If the linear functionals λ_1 are defined by

(38)
$$\lambda_{I}(h) \coloneqq \frac{\int_{\tilde{E}(I)} h(\psi(s))\omega(s) \, ds}{|I|2^{m(I)}}, \qquad I \in \mathscr{C},$$

then the operator T defined by

(39)
$$Th(x) \coloneqq \sum_{I \in \mathscr{C}} w(I)\lambda_I(h)g_I(x)$$

satisfies the conditions (8) but with $Tf = \bar{g}$.

Proof. By equation (37) we have that $w(I)\lambda_I(f) = 1$ and so equation (29) implies that $Tf = \bar{g}$. By inequality (30), the facts that the $\tilde{E}(I)$'s are disjoint, and $\psi(s)$ belongs to Γ_s it follows that

(40)
$$\|Th\|_{H^1} \leq c \sum_{I \in \mathscr{C}} \int_{\tilde{E}(I)} |h(\psi(s))| \, ds \leq c \int Nh(s) \, ds.$$

Hence T satisfies part (ii) of (8).

Suppose now that h belongs to L^{∞} , then by inequality (26) and the fact that $|\tilde{E}(I)| = |F(I)| \le |I|$ we have that

$$Th(x) \leq c \sum_{I \in \mathscr{C}} |\lambda_I(h)| 2^{m(I)} \chi_{E(I)}(x)$$
$$\leq c \|h\|_{L^{\infty}} \sum_{I \in \mathscr{C}} |\chi_{E(I)} \leq c \|h\|_{L^{\infty}}$$

holds. The last inequality follows from inequality (28). Hence T satisfies the estimate (iii) of (8) and the lemma is established.

Lemma 7. Suppose now that g satisfies condition (9) and Ng < Nf, then there exists an admissible operator T such that Tf = g.

Proof. We use Lemma 6 to produce a sequence of operators T_n such that $T_n f = g_n$. The T_n 's have uniformly bounded operator norms on H^1 and L^{∞} which are independent of n, f, and g. Recall that the functions g_n are defined in (10). We employ Calderón's technique [4] to supply the limit operator T with the desired properties (8). Let γ be a Banach limit. Suppose that h belongs to $H^1 + L^{\infty}$. For each measurable set E of finite measure, let

$$\nu(E) \coloneqq \gamma \left(\left\{ \int_E T_n h \right\}_{n=-1}^{-\infty} \right),$$

then ν is absolutely continuous with respect to Lebesgue measure on **R**. Hence there exists a locally integrable function *Th* such that

$$\int_E Th = \nu(E)$$

for each set E of finite measure. It follows by the continuity of γ that (41) $P_y * Th(t) = \gamma(\{P_y * T_nh(t)\}_{n=-1}^{-\infty}).$

In particular, equation (41) holds with $(t, y) = \psi(x)$ where ψ is an arbitrary Borel measurable function from **R** to **U** with $\psi(x) \in \Gamma_x$. So for each set *E* of finite measure it follows that

$$\int_{E} N(Th) \leq \gamma \left(\left\{ \int_{E} N(T_{n}h) \right\}_{n=-1}^{-\infty} \right)$$
$$\leq c \int_{0}^{|E|} (Nh)^{*}(s) \, ds,$$

since γ is a positive linear functional on l^{∞} . Hence

By this last fact, the definition of Th and equation (11) it follows that T satisfies the desired properties.

Proof of Theorem 1. Suppose that $f \in H^1 + L^{\infty}$ and Ng < Nf. In view of Lemma 7 we may assume that

$$\lim_{t\to\infty} (Ng)^*(t) =: \alpha > 0,$$

since this is the only case that remains to be proved. Observe that

$$\alpha \leq \lim_{t \to \infty} \frac{\int_0^t (Ng)^*}{t} \leq \lim_{t \to \infty} \frac{\int_0^t (Nf)^*}{t} = \lim_{t \to \infty} (Nf)^*(t),$$

since both integrands are nonincreasing. Hence there exist sets $F_1 \subseteq F_2 \subseteq \cdots$ of finite measure increasing to ∞ and a Borel measurable function $\psi : \mathbf{R} \to \mathbf{U}$ such that $\psi(x) \in \Gamma_x$ and

$$|f(\psi(x))| > \frac{1}{2}\alpha$$
 for $x \in \bigcup_{j=1}^{\infty} F_j$.

Let γ be a Banach limit and define the linear functional λ by

$$\lambda(h) \coloneqq \gamma \left(\left\{ |F_j|^{-1} \int_{F_j} h(\psi(s)) \omega(s) \, ds \right\}_{j=1}^{\infty} \right),$$

where $\omega(s) \coloneqq \operatorname{sgn} f(\psi(s))$. Now γ is a Banach limit so it follows that

(42)
$$|\lambda(h)| \le \gamma(\{\|h\|_{L^{\infty}}\}_{j=1}^{\infty}) = \|h\|_{L^{\infty}}$$

and

(43)
$$\lambda(f) \ge \frac{1}{2}\alpha.$$

Next select the largest integer n_0 such that

 $2^{n_0} \le \alpha < 2^{n_0+1}$.

Let g_{n_0} be defined as in (10) and set $b_{n_0} \coloneqq g - g_{n_0}$. Now g_{n_0} satisfies the hypothesis of Lemma 6 so there exists an admissible operator T_0 such that

$$(44) T_0 f = g_{n_0}.$$

For the portion b_{n_0} of g we define the operator T_1 by

$$T_1h(x) := \frac{\lambda(h)}{\lambda(f)} b_{n_0}, \qquad h \in H^1 + L^{\infty},$$

then $T_1 f = b_{n_0}$. By inequalities (42), (43), and (13) it follows that

$$\|T_1h\|_{L^{\infty}} \leq 14 \|h\|_{L^{\infty}}.$$

Moreover, λ vanishes on H^1 . To verify this, note that Nh is integrable and so $|F_j|^{-1} \int_{F_j} Nh \to 0$ as $j \to \infty$. But γ was chosen to take convergent sequences to their limits. Consequently, T_1 is trivially bounded on H^1 . The operator $T \coloneqq T_0 + T_1$ fulfills the statement of the theorem.

Proof of Corollary 2. The fact that N(X) is an interpolation space is straightforward since the estimate (7) holds and

$$K(Tf, t) \leq cK(f, t), \qquad t > 0,$$

for all admissible operators T. For the converse, the Brudnyi-Krugljak theory asserts that Theorem 1 is enough to guarantee that the interpolation spaces Y of (H^1, L^{∞}) arise as spaces generated by function norms Φ_Y applied to the K-functional:

$$||f||_{Y} \sim \Phi_{Y}(K(f, \cdot)) \sim \Phi_{Y}\left(\int_{0}^{(\cdot)} (Nf)^{*}(s) ds\right),$$

with constants independent of the functions f. Define the norm

$$\|\varphi\|_{X} \coloneqq \Phi_{Y}\left(\int_{0}^{(\cdot)} \varphi^{*}(s) \, ds\right)$$

and X as the rearrangement-invariant space of functions for which this norm is finite. It follows that Y = N(X) with equivalent norms.

Acknowledgments. This research was supported in part by National Science Foundation Grant No. DMS-8602165. The author expresses sincere thanks to Björn Jawerth for several helpful comments concerning this paper.

References

- 1. C. BENNETT, R. SHARPLEY (1986): K-divisibility and a theorem of Lorentz and Shimogaki. Proc. Amer. Math. Soc., 96:585-592.
- 2. C. BENNETT, R. SHARPLEY (to appear): Interpolation of Operators. New York: Academic Press.
- 3. JU. A. BRUDNYI, N. JA. KRUGLJAK (1981): Real interpolation functors. Soviet Math. Dokl., 23:5-8.

- 4. A. P. CALDERÓN (1966): Spaces between L^1 and L^{∞} and the theorem of Marcinkiewicz. Studia Math., 26:273-299.
- 5. R. R. COIFMAN (1974): A real variable characterization of H^p. Studia Math., 51:269-274.
- M. CWIKEL (1984): K-divisibility of the K-functional and Calderón couples. Ark. Mat., 22:39-62.
 C. FEFFERMAN, N. M. RIVIÈRE, Y. SAGHER (1974): Interpolation between H^p spaces: the real
- method. Trans. Amer. Math. Soc., 191:75-81.
- 8. C. HERZ (1974): H^p spaces of martingales, 0 . Z. Wahrsch. Verw. Gebiete, 28:189-205.
- 9. S. JANSON, P. W. JONES (1982): Interpolation between H^p spaces: the complex method. J. Funct. Anal., 48:58-80.
- 10. B. JAWERTH, A. TORCHINSKY (1985): Local sharp maximal functions. J. Approx. Theory, 43:231-270.
- P. W. JONES (1984): On interpolation between H¹ and H[∞]. In: Interpolation Spaces and Allied Topics in Analysis (M. Cwikel, J. Peetre, eds.). Lecture Notes in Mathematics, vol. 1070. New York: Springer-Verlag, pp. 143-151.
- 12. G. G. LORENTZ, T. SHIMOGAKI (1971): Interpolation theorems for the pairs of spaces (L^{ρ}, L^{∞}) and (L^{1}, L^{q}) . Trans. Amer. Math. Soc., **159**:207-221.
- 13. R. SHARPLEY (1986): On the atomic decomposition of H¹ and interpolation. Proc. Amer. Math. Soc., 97:186-188.

R. Sharpley Department of Mathematics University of South Carolina Columbia South Carolina 29208 U.S.A.