A Characterization of the Interpolation Spaces of H^{1} and L^{∞} on the Line

Robert Sharpley

Abstract

The Calderón-Mitjagin theorem characterizes all interpolation spaces of the pair of Lebesgue spaces $\left(L^{1}, L^{\infty}\right)$ as the rearrangement-invariant spaces. The results of this paper show that the interpolation spaces of $H^{1}(\mathbf{R})$ and $L^{\infty}(\mathbf{R})$ consist of elements whose nontangential maximal functions lie in rearrangementinvariant spaces.

Let X_{0} and X_{1} be two Banach spaces which are continuously embedded in a common Hausdorff topological vector space. An admissible operator for the pair $\left(X_{0}, X_{1}\right)$ is a linear operator whose domain contains the union of the two spaces and whose restrictions to X_{i} is a bounded operator on $X_{i}(i=0,1)$. A space X is called an interpolation space for the pair $\left(X_{0}, X_{1}\right)$ if each admissible operator T is bounded on X.

For a measurable function φ let φ^{*} denote its nonincreasing rearrangement (see [4] or [2] for details). In [4] Calderón showed that the interpolation spaces of L^{1} and L^{∞} are characterized in terms of a quasi-order < (the Hardy-LittlewoodPólya relation) involving the rearrangements φ^{*} :

$$
\begin{equation*}
\psi<\varphi:=\int_{0}^{t} \psi^{*}(s) d s \leq \int_{0}^{t} \varphi^{*}(s) d s, \quad \text { all } t>0 . \tag{1}
\end{equation*}
$$

In fact, Calderón showed that a necessary and sufficient condition for $\psi<\varphi$ to hold is that there exists an admissible operator T for (L^{1}, L^{∞}), with respective operator norms one, such that $T \varphi=\psi$. The interpolation spaces X are spaces of measurable functions whose norm $\|\cdot\|_{x}$ satisfies the condition

$$
\begin{equation*}
\psi<\varphi \Rightarrow\|\psi\|_{x} \leq\|\varphi\|_{x} \tag{2}
\end{equation*}
$$

The Peetre K-functional for $\left(X_{0}, X_{1}\right)$ is defined by

$$
K\left(f, t ; X_{0}, X_{1}\right):=\inf \left\{\left\|f_{0}\right\|_{x_{0}}+t\left\|f_{1}\right\|_{X_{1}}: f=f_{0}+f_{1}\right\}
$$

where the infimum is taken over all decompositions of $f=f_{0}+f_{1}$ with $f_{i} \in X_{i}$

[^0]($i=0,1$). Peetre proved that
$$
K\left(\varphi, t ; L^{1}, L^{\infty}\right)=\int_{0}^{t} \varphi^{*}(s) d s
$$
and so (2) may be reformulated in terms of the K-functional for the pair. A pair (X_{0}, X_{1}) is called a Calderón couple if the condition
$$
K(g, t) \leq K(f, t), \quad \text { all } \quad t>0
$$
implies the existence of an admissible operator T (whose norm depends only on the spaces X_{0} and X_{1}) such that
$$
T f=g
$$

Brudnyi and Krugljak [3] have shown that the interpolation spaces of a Calderón couple (X_{0}, X_{1}) are exactly the spaces Y (up to equivalent renorming) such that

$$
\begin{equation*}
\|f\|_{Y}=\Phi(K(f, \cdot)) \tag{3}
\end{equation*}
$$

where Φ is an admissible function norm. In fact, it has been proven in [1] that this follows from the "fundamental lemma" of the K-method [6] and a lemma of Lorentz and Shimogaki concerning the quasi-order $<$. We show that a complementary lemma, also due to Lorentz and Shimogaki, plays a critical role in establishing that (H^{1}, L^{∞}) is a Calderón couple. In [11] Peter Jones utilized his constructive solutions of $\bar{\partial}$ equations with Carleson measure data to show that (H^{1}, H^{∞}) is a Calderón couple. The general pattern of our proof follows that in [11] but has some noticeable differences and simplifications. This is partly due to the fact that the replacement of H^{∞} by L^{∞} relaxes the analyticity requirement. In [9] Janson and Jones investigated, among other things, the complex method for the pair (H^{1}, L^{∞}) and employ similar techniques to this paper.

Let \mathbf{R} denote the real line and $\mathbf{U}=\{(x, y): y>0\}$, the upper half plane. Let the function f belong to $L^{1}(\mathbf{R})+L^{\infty}(\mathbf{R})$. We use the symbol f also to denote the harmonic extension of f to U,

$$
f(x, y)=P_{y} * f(x)
$$

where P_{y} is the Poisson kernel and * denotes convolution on \mathbf{R}. For $x \in \mathbf{R}$, denote by $\Gamma_{x}:=\{(t, y) \in \mathrm{U}:|x-t| \leq y\}$ the cone with vertex at x. The nontangential maximal function of f is defined by $N f(x):=\sup \left\{|f(z, y)|:(z, y) \in \Gamma_{x}\right\}$. There are several equivalent norms for the Hardy space H^{1}. We shall use

$$
\begin{equation*}
\|f\|_{H^{1}}:=\|N f\|_{L^{1}} \tag{4}
\end{equation*}
$$

An H^{1}-atom, or in short an atom, for an interval I is any function a_{l} which satisfies

$$
\begin{equation*}
\int a_{I}=0, \quad\left|a_{I}\right| \leq|I|^{-1} \chi_{I} \tag{5}
\end{equation*}
$$

Coifman [5] has provided an "atomic" description of H^{1} :

$$
H^{1}=\left\{f: f=\sum_{j} \lambda_{j} a_{l_{j}}, \sum_{j}\left|\lambda_{j}\right|<\infty\right\}
$$

where the $a_{I_{j}}$ are atoms. Moreover, it was shown that

$$
\begin{equation*}
\|f\|_{H^{\prime}} \sim\|f\|_{H_{a}^{\prime}}:=\inf \left\{\sum_{j}\left|\lambda_{j}\right|: f=\sum_{j} \lambda_{j} a_{I_{j}}\right\} \tag{6}
\end{equation*}
$$

where $\varphi \sim \psi$ means that there exist positive constants c_{1} and c_{2} such that $c_{1} \varphi \leq \psi \leq$ $c_{2} \varphi$. The last expression in inequality (6) is usually referred to as the atomic H^{1} norm. In [13] a simple proof of (6) is presented and it is shown that

$$
\begin{equation*}
K(f, t)=K\left(f, t ; H^{1}, L^{\infty}\right) \sim \int_{0}^{t}(N f)^{*}(s) d s, \quad t>0 \tag{7}
\end{equation*}
$$

A similar result in terms of the grand maximal operator was obtained earlier in [7], but the estimate (7) is better suited for our purposes.

Theorem 1. The pair $\left(H^{1}(\mathbf{R}), L^{\infty}(\mathbf{R})\right)$ is a Calderón couple; that is, if $N g<N f$, then there exists a linear operator T such that the conditions

$$
\begin{equation*}
\text { (i) } \quad T f=g \tag{8}
\end{equation*}
$$

(ii) $\|T h\|_{H^{\prime}} \leq c\|h\|_{H^{1}}, \quad h \in H^{1}$,
(iii) $\|T h\|_{L^{x}} \leq c\|h\|_{L^{\infty}}, \quad h \in L^{\infty}$,
hold. The constant c is independent of f and g.
The definition of the H^{1} norm (4) shows that H^{1} consists of functions f for which $N f$ belongs to L^{1}. It is also clear that L^{∞} is comprised of functions f such that $N f$ belongs to L^{∞}. If X is a rearrangement-invariant space, then $N(X)$ is defined as the space of functions for which the norm

$$
\|f\|_{N(X)}:=\|N f\|_{X}
$$

is finite. The question naturally arises as to whether the interpolation spaces for $N\left(L^{1}\right)$ and $N\left(L^{\infty}\right)$ are precisely the spaces $N(X)$. The next result answers this in the affirmative.

Corollary 2. If X is a rearrangement-invariant space, then $N(X)$ is an interpolation space for $\left(H^{1}(\mathbf{R}), L^{\infty}(\mathbf{R})\right)$. Conversely, if Y is an interpolation space for ($H^{1}(\mathbf{R}), L^{\infty}(\mathbf{R})$), then there exists a unique rearrangement-invariant space X such that $Y=N(X)$ with equivalent norms.

In order to construct the desired operator T satisfying the properties (8), we first assume that g satisfies the condition

$$
\begin{equation*}
\lim _{t \rightarrow \infty}(N g)^{*}(t)=0 \tag{9}
\end{equation*}
$$

Let O_{n} denote the open set $\left\{N g>2^{n}\right\}$. Define

$$
\begin{equation*}
g_{n}:=\sum_{l \in \mathscr{E}_{n}}[g-I(g)] \chi_{l} \tag{10}
\end{equation*}
$$

where \mathscr{C}_{n} is the collection of all components of O_{n} and $I(g)$ denotes the average $|I|^{-1} \int_{I} g$ of g over the interval I. It is easy to see that

$$
\begin{equation*}
\lim _{n \rightarrow-\infty} g_{n}=g \text { almost everywhere } \tag{11}
\end{equation*}
$$

by using the following basic estimate for averages in terms of the nontangential maximal operator (see inequality (3) of [13] and its proof):

$$
\begin{equation*}
|I(g)| \leq 7 \max _{x \in \partial I} N g(x) \tag{12}
\end{equation*}
$$

Indeed, since g belongs to $H^{1}+L^{\infty}$ and satisfies (9), the measure of O_{n} is finite and $O_{n} \uparrow \mathbf{R}$ as $n \downarrow-\infty$. By inequality (12) it follows that, for $I \in \mathscr{C}_{n}$, there holds $|I(g)| \leq 7 \cdot 2^{n}$. Hence

$$
\begin{equation*}
\left|g-g_{n}\right|=\left|g \chi_{n}^{c}+\sum_{I \in G_{n}} I(g) \chi_{I}\right| \leq 7 \cdot 2^{n} \tag{13}
\end{equation*}
$$

which converges to 0 as $n \rightarrow-\infty$ and so (11) holds.
Our plan is to construct operators $T=T_{n}$ so that (8) holds with the approximations g_{n} replacing g and with uniform operator bounds. Using a limiting argument we obtain an operator T to establish similar results for functions g in $H^{1}+L^{\infty}$ which satisfy condition (9). Finally, we remove this last restriction to obtain the general case.

For each integer k define

$$
\begin{equation*}
a_{k}:=g_{k}-g_{k+1}, \tag{14}
\end{equation*}
$$

then it follows by telescoping the sum that

$$
\begin{equation*}
g=\sum_{k=-\infty}^{\infty} a_{k} \tag{15}
\end{equation*}
$$

The first result indicates the connection of this decomposition with the Peetre K-functional.

Theorem 3. Suppose that g satisfies (9) and the functions a_{k} are chosen as in (14), then

$$
\begin{equation*}
K(g, t) \leq \sum_{k=-\infty}^{\infty} \min \left(\left\|a_{k}\right\|_{H^{1}}, t\left\|a_{k}\right\|_{L^{\infty}}\right) \leq c K(g, t), \quad t>0 . \tag{16}
\end{equation*}
$$

Proof. The left-hand inequality follows since $K(\cdot, t)$ is a norm and by the definition of the K-functional. For the right-hand inequality, let I be any interval in \mathscr{C}_{k}. Define the collection of intervals $\mathscr{C}_{I}:=\left\{J \in \mathscr{C}_{k+1}: J \subset I\right\}$ and the set $G(I)$ by $G(I):=I \backslash O_{k+1}$. Next set

$$
\begin{equation*}
b_{I}:=a_{k} \chi_{I}=g \chi_{G(I)}+\sum_{J \in \mathscr{C}_{I}} J(g) \chi_{J}-I(g) \chi_{I} \tag{17}
\end{equation*}
$$

then b_{I} satisfies $\int b_{I}=0$ and, by inequality (12),

$$
\left|b_{I}\right| \leq 2^{k} \chi_{G(I)}+7 \cdot 2^{k+1} \sum_{J \in \mathscr{F}_{I}} \chi_{J}+7 \cdot 2^{k} \chi_{I} \leq 21 \cdot 2^{k} \chi_{I}
$$

Hence

$$
\begin{equation*}
\left\|a_{k}\right\|_{L^{x} \leq 21} \cdot 2^{k} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|a_{k}\right\|_{\mathcal{H}^{\prime}} \leq c\left\|a_{k}\right\|_{H_{a}^{\prime}} \leq c 2^{k} \sum_{l \in ध_{k}}|I| \leq c 2^{k}\left|O_{k}\right| \tag{19}
\end{equation*}
$$

since $b_{I} /\left(21 \cdot 2^{k}|I|\right)$ is an H^{1} atom. By these two estimates we see that if j is an integer selected so that $2^{j-1}<(N g)^{*}(t) \leq 2^{j}$, then

$$
\begin{aligned}
& \sum_{k=-\infty}^{\infty} \min \left(\left\|a_{k}\right\|_{\left.H^{1}, t\left\|a_{k}\right\|_{L^{\infty}}\right)} \leq c \sum_{k=-\infty}^{\infty} 2^{k} \min \left(\left|O_{k}\right|, t\right)\right. \\
&=c\left\{\sum_{k=j}^{\infty} 2^{k}\left|O_{k}\right|+t \sum_{k=-\infty}^{j-1} 2^{k}\right\} \\
& \leq c\left\{\sum_{k=j}^{\infty}\left(2^{k+1}-2^{k}\right)\left|O_{k}\right|+t 2^{j}\right\} \\
& \leq c\left\{\int_{O_{j}} N g+t 2^{j}\right\} \\
& \leq c \int_{0}^{t}(N g)^{*} \leq c K(g, t) .
\end{aligned}
$$

In the fourth line we used summation by parts and the fact that $N g>2^{k}$ on the set $O_{k} \backslash O_{k+1}$.

Remark 4. Theorem 3 is actually implicit in the proof given in [13] and may be regarded as an explicit decomposition for Cwikel's version of the fundamental lemma in the theory of the real method of interpolation [6]. The proof is included for completeness.

At this stage of the proof we fix n and, for notational convenience, set $\bar{g}:=g_{n}$; that is, we first construct an operator for \bar{g} and will pass to the limit at a later stage. Rather than write this function in the form of the atomic decomposition (see (17))

$$
\begin{equation*}
\bar{g}=\sum_{k=n}^{\infty} \sum_{l \in \mathscr{C}_{k}} b_{l} \tag{20}
\end{equation*}
$$

we utilize a stopping time argument to telescope the b_{l} 's locally to scalar multiples of atoms with additional nice properties. We construct recursively a subcollection \mathscr{C} of $\bigcup_{n}^{\infty} \mathscr{C}_{k}$ in the following way. Begin by placing all the intervals from \mathscr{C}_{n} into \mathscr{C}. Next we perform the following recursive step for each interval I which has previously been placed in \mathscr{C} :

Define the integer $m(I)$ by $m(I):=\min \left\{k:\left|O_{k} \cap I\right| \leq \frac{1}{2}|I|\right\}$ and $\mathscr{C}(I)$ to be the collection of components of $O_{m(I)} \cap I$. Add all intervals J from $\mathscr{C}(I)$ to the collection \mathscr{C}.
Let $F(I) \subset I$ be defined by

$$
\begin{equation*}
F(I):=I \backslash \bigcup_{J \in \mathscr{\&}(I)} J=I \backslash O_{m(I)} \tag{21}
\end{equation*}
$$

then $(N g) \chi_{F(I)} \leq 2^{m(I)}$. Note that the $F(I)$'s are disjoint and

$$
O_{n}=\bigcup_{I \in \mathscr{C}} F(I)
$$

In analogy with the decomposition (17) we define

$$
\begin{equation*}
g_{I}:=(\bar{g}-\alpha(I)) \chi_{F(I)}+\sum_{J \in \mathscr{G}(I)} \alpha(J) \chi_{F(J)} \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(I):=|F(I)|^{-1} \int_{I} \bar{g}, \quad I \in \mathscr{C} \tag{23}
\end{equation*}
$$

Notice that g_{I} is supported in I and that

$$
\begin{equation*}
\int g_{I}=\int_{F(I)} \bar{g}-\int_{I} \bar{g}+\sum_{J \in \mathscr{\mathscr { C }}(I)} \int_{J} \bar{g}=0 . \tag{24}
\end{equation*}
$$

Moreover, the recursive criteria guarantee that

$$
\begin{equation*}
|F(I)| \geq|I| / 2 \tag{25}
\end{equation*}
$$

Recall that for each $I \in \mathscr{C}_{k}$ there is an $I_{0} \in \mathscr{C}_{n}$ (the ancestor of I) which contains I and so by inequality (12) we have

$$
\begin{aligned}
|\alpha(I)| & \leq 2|I(\bar{g})| \leq 2\left(|I(g)|+\left|I_{0}(g)\right|\right) \\
& \leq 2\left(7 \cdot 2^{k}+7 \cdot 2^{n}\right) \leq 28 \cdot 2^{k} .
\end{aligned}
$$

It follows that

$$
\begin{equation*}
\left|g_{I}\right| \leq 28 \cdot 2^{m(I)} \chi_{E(I)} \tag{26}
\end{equation*}
$$

if $E(I)$ is defined as the disjoint union of $F(I)$ with those at the next level

$$
\begin{equation*}
E(I):=F(I) \cup\left(\bigcup_{J \in \mathscr{\Re}(I)} F(J)\right) . \tag{27}
\end{equation*}
$$

Now $E(I) \subset I$ and at most two of them overlap

$$
\begin{equation*}
\sum_{I \in \mathscr{C}_{E}} \chi_{E(I)} \leq 2 \tag{28}
\end{equation*}
$$

since the $F(I)$'s are disjoint. As a consequence, we may write

$$
\begin{equation*}
\bar{g}(x)=\sum_{I \in \mathscr{G}} g_{I}(x) \tag{29}
\end{equation*}
$$

where for each x there are at most two nonzero terms in the sum. The sum in (29) is our desired decomposition of \bar{g}. It follows that

$$
\begin{equation*}
\left\|g_{I}\right\|_{H^{\prime}} \leq c 2^{m(t)}|I| \tag{30}
\end{equation*}
$$

since the function (28|I|2 $\left.2^{m(I)}\right)^{-1} g_{i}$ is an H^{1}-atom by the estimates (24) and (26). Define

$$
\begin{equation*}
\tilde{g}:=\sum_{I \in \mathscr{C}} 2^{m(I)} \chi_{F(I)} \tag{31}
\end{equation*}
$$

then, obviously,

$$
N g \leq \tilde{g} \quad \text { on } O_{n}
$$

Conversely, the next result shows that \tilde{g} is controlled by $N g$. In order to establish this result we will need the notion of the "median" of a function $|h|$ over an interval I :

$$
m_{I}(h):=\inf \left\{\lambda:|\{|h|>\lambda\} \cap I| \leq \frac{1}{2}|I|\right\}
$$

and the corresponding maximal operator $m h$ defined by

$$
m h(x):=\sup _{I \ni x} m_{I}(h)
$$

From the definitions it is clear that

$$
\{x: m h(x)>\lambda\}=\left\{x: M\left(\chi_{\{|h|>\lambda\}}\right)(x)>\frac{1}{2}\right\},
$$

where M denotes the Hardy-Littlewood maximal operator. As was pointed out in [10], it follows that

$$
|\{m h>\lambda\}| \leq 3\left(\frac{1}{2}\right)^{-1}\left\|\chi_{\{|h|>\lambda\}}\right\|_{L^{1}}=6|\{|h|>\lambda\}|,
$$

since M is weak type (1,1). Hence the corresponding decreasing rearrangements must satisfy

$$
\begin{equation*}
(m h)^{*}(t) \leq h^{*}(t / 6) \tag{32}
\end{equation*}
$$

Proposition 5. If \tilde{g} is defined by equation (31), then

$$
\begin{equation*}
(\tilde{g})^{*}(t) \leq 2(N g)^{*}(t / 6), \quad t>0 \tag{33}
\end{equation*}
$$

Hence, if $N g<N f$, then

$$
\begin{equation*}
\tilde{g}<c N f \tag{34}
\end{equation*}
$$

Proof. Inequality (33) follows immediately from inequality (32) and the fact that $\tilde{g} \leq 2 m(N g)$. Relation (34) follows by changing variables.

By (34) a variant (see Corollary V. 10.5 of [2]) of a decomposition lemma of Lorentz and Shimogaki [12] for the quasi-order < implies the existence of pairwise disjoint sets $\{\tilde{E}(I)\}_{I \in \mathscr{C}}$ such that $|E(I)|=|F(I)|$ and

$$
\begin{equation*}
2 \int_{\tilde{E}(I)} N(f) \geq|F(I)| 2^{m(I)}, \quad I \in \mathscr{C} \tag{35}
\end{equation*}
$$

There exists a Borel measurable function $\psi: \mathbf{R} \rightarrow \mathbf{U}\left(\psi(x) \in \Gamma_{x}\right)$ such that $|f(\psi(x))| \geq \frac{1}{2} N f(x)$, so

$$
\begin{equation*}
4 \int_{\dot{E}(I)}|f(\psi(s))| d s \geq|F(I)| 2^{m(I)}, \quad I \in \mathscr{C} \tag{36}
\end{equation*}
$$

Define the unimodular function $\omega(x):=\operatorname{sgn} f(\psi(x))$ and the weights $w(I)$ so that

$$
\begin{equation*}
w(I) \int_{\tilde{E}(I)}|f(\psi(s))| d s=|I| 2^{m(I)} \tag{37}
\end{equation*}
$$

then inequalities (36) and (25) show that the $w(I)$ are uniformly bounded with a bound independent of the functions f and \bar{g}.

Lemma 6. Suppose that $N g<N f$ and \bar{g} is defined as the g_{n} in equation (10). If the linear functionals λ_{1} are defined by

$$
\begin{equation*}
\lambda_{I}(h):=\frac{\int_{\tilde{E}(I)} h(\psi(s)) \omega(s) d s}{|I| 2^{m(I)}}, \quad I \in \mathscr{C}, \tag{38}
\end{equation*}
$$

then the operator T defined by

$$
\begin{equation*}
T h(x):=\sum_{I \in \mathscr{H}_{B}} w(I) \lambda_{I}(h) g_{I}(x) \tag{39}
\end{equation*}
$$

satisfies the conditions (8) but with $T f=\overline{\mathrm{g}}$.
Proof. By equation (37) we have that $\boldsymbol{w}(I) \lambda_{I}(f)=1$ and so equation (29) implies that $T f=\overline{\mathrm{g}}$. By inequality (30), the facts that the $\tilde{E}(I)$'s are disjoint, and $\psi(s)$ belongs to Γ_{s} it follows that

$$
\begin{equation*}
\|T h\|_{H^{1}} \leq c \sum_{I \in \mathscr{C}} \int_{\tilde{E}(I)}|h(\psi(s))| d s \leq c \int N h(s) d s . \tag{40}
\end{equation*}
$$

Hence T satisfies part (ii) of (8).
Suppose now that h belongs to L^{∞}, then by inequality (26) and the fact that $|\tilde{E}(I)|=|F(I)| \leq|I|$ we have that

$$
\begin{aligned}
|T h(x)| & \leq c \sum_{I \in \mathscr{C}}\left|\lambda_{I}(h)\right| 2^{m(I)} \chi_{E(I)}(x) \\
& \leq c\|h\|_{L^{\infty}} \sum_{I \in \mathscr{C}} \chi_{E(I)} \leq c\|h\|_{L^{\infty}}
\end{aligned}
$$

holds. The last inequality follows from inequality (28). Hence T satisfies the estimate (iii) of (8) and the lemma is established.

Lemma 7. Suppose now that g satisfies condition (9) and $N g<N f$, then there exists an admissible operator T such that $T f=g$.

Proof. We use Lemma 6 to produce a sequence of operators T_{n} such that $T_{n} f=g_{n}$. The T_{n} 's have uniformly bounded operator norms on H^{1} and L^{∞} which are independent of n, f, and g. Recall that the functions g_{n} are defined in (10). We employ Calderón's technique [4] to supply the limit operator T with the desired properties (8). Let γ be a Banach limit. Suppose that h belongs to $H^{1}+L^{\infty}$. For each measurable set E of finite measure, let

$$
\nu(E):=\gamma\left(\left\{\int_{E} T_{n} h\right\}_{n=-1}^{-\infty}\right),
$$

then ν is absolutely continuous with respect to Lebesgue measure on R. Hence there exists a locally integrable function $T h$ such that

$$
\int_{E} T h=\nu(E)
$$

for each set E of finite measure. It follows by the continuity of γ that

$$
\begin{equation*}
P_{y} * T h(t)=\gamma\left(\left\{P_{y} * T_{n} h(t)\right\}_{n=-1}^{-\infty}\right) \tag{41}
\end{equation*}
$$

In particular, equation (41) holds with $(t, y)=\psi(x)$ where ψ is an arbitrary Borel measurable function from \mathbf{R} to U with $\psi(x) \in \Gamma_{x}$. So for each set E of finite measure it follows that

$$
\begin{aligned}
\int_{E} N(T h) & \leq \gamma\left(\left\{\int_{E} N\left(T_{n} h\right)\right\}_{n=-1}^{-\infty}\right) \\
& \leq c \int_{0}^{|E|}(N h)^{*}(s) d s
\end{aligned}
$$

since γ is a positive linear functional on l^{∞}. Hence

$$
N(T h)<c N h .
$$

By this last fact, the definition of $T h$ and equation (11) it follows that T satisfies the desired properties.

Proof of Theorem 1. Suppose that $f \in H^{1}+L^{\infty}$ and $N g<N f$. In view of Lemma 7 we may assume that

$$
\lim _{t \rightarrow \infty}(N g)^{*}(t)=: \alpha>0
$$

since this is the only case that remains to be proved. Observe that

$$
\alpha \leq \lim _{t \rightarrow \infty} \frac{\int_{0}^{t}(N g)^{*}}{t} \leq \lim _{t \rightarrow \infty} \frac{\int_{0}^{t}(N f)^{*}}{t}=\lim _{t \rightarrow \infty}(N f)^{*}(t)
$$

since both integrands are nonincreasing. Hence there exist sets $F_{1} \subset F_{2} \subset \cdots$ of finite measure increasing to ∞ and a Borel measurable function $\psi: \mathbf{R} \rightarrow \mathbf{U}$ such that $\psi(x) \in \Gamma_{x}$ and

$$
|f(\psi(x))|>\frac{1}{2} \alpha \quad \text { for } \quad x \in \bigcup_{j=1}^{\infty} F_{j}
$$

Let γ be a Banach limit and define the linear functional λ by

$$
\lambda(h):=\gamma\left(\left\{\left|F_{j}\right|^{-1} \int_{F_{j}} h(\psi(s)) \omega(s) d s\right\}_{j=1}^{\infty}\right)
$$

where $\omega(s):=\operatorname{sgn} f(\psi(s))$. Now γ is a Banach limit so it follows that

$$
\begin{equation*}
|\lambda(h)| \leq \gamma\left(\left\{\|h\|_{\left.L^{\infty}\right\}_{j=1}^{\infty}}^{\}_{j}}\right)=\|h\|_{L^{\infty}}\right. \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(f) \geq \frac{1}{2} \alpha . \tag{43}
\end{equation*}
$$

Next select the largest integer n_{0} such that

$$
2^{n_{0}} \leq \alpha<2^{n_{0}+1}
$$

Let $g_{n_{0}}$ be defined as in (10) and set $b_{n_{0}}:=g-g_{n_{0}}$. Now $g_{n_{0}}$ satisfies the hypothesis of Lemma 6 so there exists an admissible operator T_{0} such that

$$
\begin{equation*}
T_{0} f=g_{n_{0}} \tag{44}
\end{equation*}
$$

For the portion $b_{n_{0}}$ of g we define the operator T_{1} by

$$
T_{1} h(x):=\frac{\lambda(h)}{\lambda(f)} b_{n_{0}}, \quad h \in H^{1}+L^{\infty}
$$

then $T_{1} f=b_{n_{0}}$. By inequalities (42), (43), and (13) it follows that

$$
\left\|T_{1} h\right\|_{L^{\infty} \leq 14}\|h\|_{L^{\infty}} .
$$

Moreover, λ vanishes on H^{1}. To verify this, note that $N h$ is integrable and so $\left|F_{j}\right|^{-1} \int_{F} N h \rightarrow 0$ as $j \rightarrow \infty$. But γ was chosen to take convergent sequences to their limits. Consequently, T_{1} is trivially bounded on H^{1}. The operator $T:=T_{0}+T_{1}$ fulfills the statement of the theorem.

Proof of Corollary 2. The fact that $N(X)$ is an interpolation space is straightforward since the estimate (7) holds and

$$
K(T f, t) \leq c K(f, t), \quad t>0,
$$

for all admissible operators T. For the converse, the Brudnyi-Krugljak theory asserts that Theorem 1 is enough to guarantee that the interpolation spaces Y of (H^{1}, L^{∞}) arise as spaces generated by function norms Φ_{Y} applied to the K functional:

$$
\|f\|_{Y} \sim \Phi_{Y}(K(f, \cdot)) \sim \Phi_{Y}\left(\int_{0}^{(\cdot)}(N f)^{*}(s) d s\right)
$$

with constants independent of the functions f. Define the norm

$$
\|\varphi\|_{X}:=\Phi_{Y}\left(\int_{0}^{(\cdot)} \varphi^{*}(s) d s\right)
$$

and X as the rearrangement-invariant space of functions for which this norm is finite. It follows that $Y=N(X)$ with equivalent norms.

Acknowledgments. This research was supported in part by National Science Foundation Grant No. DMS-8602165. The author expresses sincere thanks to Björn Jawerth for several helpful comments concerning this paper.

References

1. C. Bennett, R. Sharpley (1986): K-divisibility and a theorem of Lorentz and Shimogaki. Proc. Amer. Math. Soc., 96:585-592.
2. C. Bennett, R. Shar pley (to appear): Interpolation of Operators. New York: Academic Press.
3. Ju. A. Brudnyi, N. Ja. Krugljak (1981): Real interpolation functors. Soviet Math. Dokl., 23:5-8.
4. A. P. CALDERÓN (1966): Spaces between L^{1} and L^{∞} and the theorem of Marcinkiewicz. Studia Math., 26:273-299.
5. R. R. Coifman (1974): A real variable characterization of H^{P}. Studia Math., 51:269-274.
6. M. Cwikel (1984): K-divisibility of the K-functional and Calderón couples. Ark. Mat., 22:39-62.
7. C. Fefferman, N. M. Riviéte, Y. Sagher (1974): Interpolation between H^{p} spaces: the real method. Trans. Amer. Math. Soc., 191:75-81.
8. C. Herz (1974): H^{p} spaces of martingales, $0<p \leq 1$. Z. Wahrsch. Verw. Gebiete, 28:189-205.
9. S. Janson, P. W. Jones (1982): Interpolation between H^{p} spaces: the complex method. J. Funct. Anal., 48:58-80.
10. B. Jawerth, A. Torchinsky (1985): Local sharp maximal functions. J. Approx. Theory, 43:231-270.
11. P. W. Jones (1984): On interpolation between H^{1} and H^{∞}. In: Interpolation Spaces and Allied Topics in Analysis (M. Cwikel, J. Peetre, eds.). Lecture Notes in Mathematics, vol. 1070. New York: Springer-Verlag, pp. 143-151.
12. G. G. Lorentz, T. Shimogaki (1971): Interpolation theorems for the pairs of spaces (L^{p}, L^{∞}) and (L^{1}, L^{q}). Trans. Amer. Math. Soc., 159:207-221.
13. R. Sharpley (1986): On the atomic decomposition of H^{l} and interpolation. Proc. Amer. Math. Soc., 97:186-188.
R. Sharpley

Department of Mathematics
University of South Carolina
Columbia
South Carolina 29208
U.S.A.

[^0]: Date received: July 11, 1986. Date revised: June 23, 1987. Communicated by Jaak Peetre. AMS classification: 30D55, 47B38.
 Key words and phrases: Hardy spaces, Nontangential maximal function, Interpolation spaces.

