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WEAK-TYPE INEQUALITIES FOR H® AND BMO

1)& Robert SharpleyZ)

Colin Bennett
ABSTRACT. In connection with the Marcinkiewicz interpelation theorem, it
appears that the most convenient way of storing the weak-type information for
a given operator is in terms of a single inequality called a weak-type inequal-
ity. The first part of the paper surveys recent results on weak-type inequali-
ties, together with their applications in harmonic znalysis and approximation
theory. The second part contains some new results on weak-type inequalities in
the Hp-theory. These include a characterization of the Peetre K-functional
for (Lp, BMO) in terms of the sharp-function, and a weak-type inequality for
the sharp-function which leads to a simple proof of the John-Nirenberg lemma

for functions of bounded mean oscillation.

§1. THE HARDY-LITTLEWOOD MAXIMAI GPERATOR AND REARRANGEMENTS. The Hardy-

Littlewood maximal function of a locally integrable function f on R" is given

by

(1.1) MMF) () = sup {—— fo |£() ]ayl,
Qax o

where the supremum extends over all cubes ) containing x with sides parallel to
the coordinate axes. From its origins in function theory [13], it has evolved
into an‘important tool in harmonic analysis [27] and related areas such as
probability 23] and ergodic theory [11].

The maximal function takes into account the local, as oppesed to the
pointwise, behavior of £. It thus provides a representation of the "magnitude”
of f amenable to differentiation and integration theory. Quantitative measure-
ment of the magnitude is most naturally made by expressing the function as a
member of such function spaces as Lp, qu, Lp {(log L)“, etc. Hence, most
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202 COLIN BENNETT & ROBERT SHARPLEY

applications hinge on the boundedness of the maximal operator M between
suitably chosen pairs of rearrangement—invariant spaces. . The purpose of
this section is to demonstrate that not only are the norms of Mf and £ related
in various ways but that in fact all such estimates are consequences of a
simple relationship between the decreasing rearrangements of the functions
themselves (cf. Theorem 1.3).

Indeed, the function** '
(1.2) £ ) == fo £ (s)ds, t >0,

*

clearly resembles the maximal function of the decreasing rearrangement £ of £
* w3 *%

Theorem 1.3, to the effect that (Mf) ~ f , tells us that £ is also the

decreasing rearrangement of the maximal function Mf of f. In particular, for

rearrangement-invariant estimates, the maximal function Mf can always be
replaced by the simpler function f**, which is itself nothing more than an
average of f*.

The idea that (Hf)* is dominated by f** goes back in some form to Hardy-
Littlewood [13]: cf. also [29, pp. 29-33]. The equivalence of these two
functions seems however to have first been pointed out by Herz [14]. In this
section we shall present a simple proof of Herz' theorem (Theorem 1.3). The

following covering lemma will be needed.

LEMMA 1.1. Let 2 be an open subset of R” with finite measure. Then

there are dyadic cubes Qj,j =1,2,3,..., with pairwise disjoint interiors, such

that
a) Qj o Q% £ 9, for each j;
b) Qecu,;
3 ]
) la] = ZIQil < 2%|a].
i

Proof. For each xefl, select a dyadic cube, 0(x) say, of smallest diameter,
which contains x and has nonempty intersection with 2%, Now subdivide Q(x)
into 2" congruent subcubes and select any one, a(x) say, which contains x.

Clearly a(x) c i, and so
(1.3) 2™ ey = [a@| = [aG) a 2] s Jae) o 2].

Let K = {Q(x) : xe22}. Because of the dyadic nature of the cubes and the
fact that |2 < =, each xeR is contained in a maximal cube, say Q(x), from K.
Listing the at most countably many cubes in [0(x) : xeQ) as Ql’ QZ""’ we see
that properties a) and b) are immediate, hence so is the first inequality in
¢). The remaining inequality follows from the observation that (1.3) is valid

for every Qi : 2—n|le < |Q; 0 2]; swmming over j, we obtain the desired result
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REMARK 1.2. If Q is a fixed cube containing 9, and if & is open relative
to Q, then a similar argument shows that the cubes Qj can be selected as sub-

cubes of Q (i.e., dyadic with respect to Q) and each Qj meets Q\Q.

THEOREM 1.3 (Herz [14]). If f is locally integrable on R, then

(1.4) 3~n(Mf)*(t) < f**(t) < 2" + 1)OHf)*(t), t > 0.

Proof. Fix t > 0. For the right-hand inequality we can suppose Cﬁf)*(t) < o,
The lower semi-continuity of Mf guarantees that the set Q = {xeR® : M£) (x) >
(Mf)*(t)} is open, and the estimate |2| < t follows from the equimeasurability
of Mf and (Mf)*. Applying Lemma 1.1 to 2, we obtain a sequence of cubes Qj’
with disjoint interiors, for which properties a), b), and ¢) of the lemma hold.
The subadditivity of £+ £

With F = (qu)c, we put g = ? fxqj and h = fo.
gives immediately J
S *% -1 1
(1.5) £ () sg @) +h () st [ +in]L-
But F «© a° 50
' =
(1.6) ull = Hxel ) < 06) ¢o).
— *

Furthermore, each Qj meets 2° so lel 1 f If(x)ldx < (Mf) (t). Hence by

Q.

]

Lemma 1.1 ¢),

lell = =f J£G]dx < 2°]2] @E)" (&) < 2°c0uE) (o)-
15y '

Together with (1.5) and (1.6), this gives the desired result.

In the following argument to establish the left-hand inequality in (1.4)
we use the fact that the maximal operator is of weak type (1,1) (t(Mf)*(t) <
3n’fﬁl) and of strong type (=,=) (IMfI°° = Iiﬂl“), and repeat a sta:gard argu-
ment due originally to Calderém |5, Theorem 81. Thus, we assume £ (t) < » and
consider the set E = {xeR" : [f(x)] > £°(t)}. Again we have |E| < t. For the

functions

g(x) = (f{x) - f*(t)sgnf(x))xg(x), h=f-g,
we have the estimates

lel, s e¢™@© - £f@n),  Tnl_< £ (.

Since
ME) (x) = (Mg)(x) + OM)(x) = (Mg)(x) + {[nf_ ,
it follows that
M) () < o1g) () + Inf_ < A0t lgl, + Inl,
< PET@) - £ () + £ () s 3E(n).

This completes the proof.
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* s b4
Herz' theorem, which asserts that (Mf) ~ £ , enables us to use £  as a

"model" for Mf. The Hardy-Littlewood maximal theorem [29, p.32] is an easy
) *% 1 et K ’, * :
consequence since |f up "t fo £ (s)dsﬂp < cJ[ f ]p (p > 1), by virtue of a

classical inequality of Hardy [28, p.196].

COROLLARY 1.4 (Hardy-Littlewood). Suppose 1 < p < =. If f ¢ LP(Rn),
then Mf ¢ LP(R™) and |Mf] < c lf] .
(R") and | 'p P’ |p

The model reveals much more. An interchange in the order of integration

gives

(1.7)

1
1

dt * 1

= [ £(s) log = ds.

1 t 1
£%@ar = [ L [ £ (s)ds dr = [ £ (s)as
o S o

O G

e B ]

If we work on the unit circle T, say, (or any fixed ball in Rn) so that the
decreasing rearrangements vanish outside of a finite interval (0, 1), then the
right-hand side is a norm for the space L log+L (T) [2]. The left-hand side
is, by Herz"' theorem, equivalent to the Ll—norm of Mf. Thus, on the one hand,
we obtain the Hardy-Littlewood result [29, p.32] that f ¢ L log+L implies

Mf ¢ Ll, and on the other, the Stein [26]-Herz [14] converse : Mf ¢ L1

implies f ¢ I, log+L.

COROLLARY 1.5  (Hardy-Littlewood-Stein-Herz). Suppose f ¢ Ll(T). Then
Mf is integrable if and only if f ¢ L log+L(T).

It should come as no surprise that Corollaries 1.4 and 1.5 fall out so
easily when we remark that the Marcinkiewicz interpolation theorem {30, p.112]
is lurking in the background. Indeed, we used the usual weak~-type hypotheses
for M in the proof of Herz' theorem. The fundamental relationship (1.4) is
seen therefore as a convenient and concise way of storing the weak~type
information for the maximal operator (strictly speaking, this remark applies
only to the left-hand inequality in (1.4); the right-hand inequality is a
bonus: it gives us the Stein-Herz converse).

In the next section we shall see how this program can be repeated for
other basic weak~type operators such as the Hilbert transform and the frac-
tional integrals. This leads to a new way of viewing the Marcinkiewicz inter-
polation theorem, and to significant extensions (cf. Section 3) of that

theorem beyond its traditional domain in harmonic analysis.

52, WEAK-TYPE INEQUALITIES. The conjugate function, or periodic Hilbert
transform, Rf = f of a function f ¢ L'(T) is defined 729, p.131] by the prin-

cipal-value integral
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(HE) (eit)

il

%

o F - 1 ix t—x

fle™) =5, [ £™) cot C5Hdx.
-n

OQur point of departure is the O0'Neil-Weiss [21] inequality

(2.1) (Hf)**(t) < cf% fz f**(s)ds + fi f**(s) q% " 0i< iy

which is a fairly easy consequence of the Stein-Weiss [28, p.240] description
of (Ex)* for characteristic functions . Clearly, the inequality has meaning
only if f** is integrable, that is, if f ¢ L log L (cf. (1.7)). Thus, (2.1)
does not describe the action of H on all of L1 and, in particular, does not
explicitly contain the information that H is of weak type (1,1) [29, p.1341.
Nevertheless, this additional information can be incorporated into (2.1) by
means of an elementary decomposition argument similar to that used in the
second half of the proof of Theorem 1.3. In so doing, Bemnett-Rudnick [2]
established the following inequality

(2.2) @O W) se &£ feras+ [T £,  o0<r<l.

valid now for all f ¢ Ll. Note that (2.1) follows, by integration, from (2.2).
This is the exact counterpart, for the Hilbert transform, of the funda-
mental inequality (1.4) for the maximal operator. As before, the classical

estimates are casy consequences:

COROLLARY 2.1 a) (M. Riesz [29, p.253]) H : P3P, 1<pce;
b) (Zygmund 129, p.254]) H:Llogl~> LI;

c) (Zygmund [29, p.254]) BH : L o> Lexp'

Proof. a) The averaging operator t-l f; (.) ds is bounded on L? for p > 1 (by
Hardy's inequality); its adjoint fi (.)ds/s is bounded on LP for p < %,

b) Integrate each side of (2.1) and use (1.7).

c) 1f f is bounded, then (2.2) shows that (Hf)*(t) grows at most logarithm-

ically as t + 0.

What is the interpretation in terms of the Marcinkiewicz interpolation
theorem? Certainly B is of weak type (1,1) but on the other hand there seems
to be no reasonable way of defining a concept of weak type (=, =) that will be
satisfied by the Hilbert transform. And yet precisely this kind of information
seeas to be encoded in the inequality (2.2) because of the results it produces
in Corollary 2.1.

We can better understand what is happening here by considering the Weyl

fractional integrals I., 0 < A < 1 30, p.135]:

A.
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(Ixf)(cit) i F%XT f: f(ei(t-x))xl-ldx 1)

The operator I, is of weak types (1, (I-A)—l) and (A-l, @) (cf. [2]). Now we
invoke the fundamental contribution of Calderén [5, p.290]1: so long as P, and
P, are finite, the pair of weak-type conditions (po,qo) and(bl,ql) on an
opeérator T can always be combined and,in fact,are equivalent to a single
inequality satisfied by T. In the case of the operator Il’ the inequality is
(2.3) (Ilf)*(t) <c (t)‘“1 f: f*(s)ds + f: skf*(s)ds/s), [ J0 27 S (8

The point of the exercise is that the Hilbert transform is, in a formal
sense, the fractional integral I of order 0. Letting A + 0, we see that the
weak~-type condition (1, (l—k)-l) tends to weak type (1,1), but the condition
(X-l,ﬂ) tends to the meaningless weak type (w,«). However, the equivalent
inequality (2.3) tends to precisely the inequality (2.2)! This suggests that
we adopt the Calderdén formulation, extended to infinite values of the para-

meters, as the fundamental notion of weak type.

DEFINITION 2.2 [2]. Suppose 0 < P, Py =, 0 < Gy 97 = with

q, * 9> and let m be the slope of the line segment ¢ joining the points
(llpo, l/qo) and (I/pl, l/ql) in the plane : m = (Ilq1 - llqo)/(llp1 - llpo).
Let S(¢) be the integral operator defined by

-1/qo .a 1/p —I/q1 = l/p1

(2.4) S(o)f(r) = ¢ f; A f(s)éz +t {m s f(s)g§ S0 €t < -,

We say that an operator T is of weak type {p , ¢ ; p,, q,) if
—-.——-_m. o o 1 1

(2.5) (TE) (1) < eSO () (L), 0i< t <».,

for all f for which the right-hand side is finite.

In particular, (2.2) shows that the Hilbert transform is of weak type
(1,1; =,=), and (2.3) that the fractional integrals IA are of weak type
(1, 1/(1-1); 1/A,»). Any inequality of the form (2.5) will be referred to

simply as a weak-type inequality.

Once the weak-type inequality (2.5) is established for a given operator
T, the interpolation is performed exactly as in Corollary 2.1(a) by means of
the Hardy inequalities. Thus, if 0 < 8 < 1 and
(2.6) 1_1-6 8 1 _1-8 f

= e o e—

e
R SR o Gy % %

l)defined in this way for f with mean value O on T, and extended by linearity

to gll f ¢ Ll.
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we apply the Lorentz LY -norm to each side of (2.5). The operator S(g) is so
designed that the right-hand side reduces, via the Hardy inequalities, to the
P cnorm of £. This shows that T : LPr - Lqr' for any r, which is precisely
Calderén's formulation [5, p.293] (and proof) of the Marcinkiewicz interpola-
tion theorem.

When applied ro the Hilbert transform, this result produces the M. Riesz
theorem as presented in Corollary 2.1(a). It is natural to ask whether parts
(b) and (c), which involve the Zygmund spaces L log L and L exp, can also be
derived in this way. While such spaces have traditionally been regarded as
Orlicz spaces (thus preventing their incorporation in the Calderén theory), it
is nevertheless the case that they can also be regarded as more general types
of Lorentz spaces, and can therefore be easily amalgamated with the qu—spaccs.
The appropriate framework is furnished by the class of lorentz-Zygmund spaces
qu(log L)a, introduced by Bennett-Rudnick [2]. A function £ (on the circle,
say) is in LPT(log 1)*, 0 < p, q s =, —» < o < =, if

(2.7) ﬂf[p,a;a B (f; (/P 1m10g £)% (£)19 Q% e o o

(with the evident modification if q = =).

Clearly, qu(]og L)o is the familiar Lorentz space qu, and it is not
hard to show that Lpp(lng L)* is the Zygmund space Lp(log L)a when p < o,
The Zypmund space of w-th power exponentially-integrable functions is nothing

-Ila. Furthermore, the 0'Neil spaces Kp(log+K)“P

more than the space me(log L)
[18] arise as the Lorentz-Zygmund spaces Lpl(log Yt Complete details are
given in [2].

With these foundations in place, it remains to formulate the Marcinkiewicz
interpolation theorem in terms of operators of weak type (po,qo;pl,ql) acting
on Lorentz-Zygmund spaces. The first part gives the "internal" results corres-
ponding to the values 0 < 6 < 1 in (2.6); the other two parts give the "end-

P

point” results corresponding to # = 0 and & = ],

THEOREM 2.3 1)(Bennett-Rudnick {21). Suppose 0 < P, <Py $® and
0 - 9, 9y = = , with q_ £ q;- Let T be a quasilinear operator of weak type

(pu,qo;pz,ql)-

a) If0<fh <1 and p, q are given by (2.6), then

T : 1P og L)* » L% (log 1)”

-—— e — —
- - — -

1), -
Ve present only the finite measure space version; the general case is given

in {2].
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thnevel‘0<a$¢and-an<u<¢.

b) If 1 <a<b=<®and = < @, B< « , then
qb

P a
T:L° (Qog D! +1° (log )P
whenever o« + 1/a = 8 + 1/b > 0.
c) If ]l sa<bs< wand —» < g, 8 < » , then
p,a q,b
A T - (log L)a+1 g (log L)B

whenever o« + 1/a = 8 + 1/b < O.

The essence of the result is that the "index" o + 1/s of the space
Lrs(log-L)0 remains constant when 0 < 6 < 1 but always decreases by a factor
of one in the endpoint cases O = 0 and 6 = 1. This single result directly
produces all of the classical rearrangement—invariant estimates for such
fundamental operators as the Hilbert transform, the fractional integrals, the
maximal operator, and the Fourier transform; complete details can be found in
[2]. Furthermore, as DeVore-Riemenschneider-Sharpley [7] have shown, this
natural formulation of the Marcinkiewicz theorem lifts effortlessly into a
general Banach space context and hence produces further applications in
harmonic analysis and approximation theory. These results form the core of
the next section.

We conclude our discussion of the rearrangement-invariant case with some
remarks on multilinear generalizations of Theorem 2.3. Such results are of
importance in dealing with convelution and tensor product operators [19,20,25],
for example. Sharpley [25] has developed weak-type inequalities for bilinear
(or multilinear) operators T satisfying m individual weak-type estimates. The
weak-type inequality has the form

2.8  TERDT) sc [T [T @ ) v sy E =5 ¥ 2N

where the kernel ?o is a combination of powers of r, s, and t determined by
the m initial estimates.

The "internal" mapping properties of T are obtained from (2.8) exactly
as in the linear case (Theorem 2.3a)), namely, by applying appropriate norms

to (2.8) and reducing the right-band side by means of suitable generalizations

)

of the Hardy inequalities (cf. [25]1). The analysis of the endpoint cases in
Theorem 2.3 b), ¢) is much more intricate. Nevertheless, it again ultimately
depends on what can be regarded as limiting cases of the Hardy inequalities.
It would be of some interest to have corresponding inequalities for the multi-

linear theory.



WEAK-TYPE INEQUALITIES 209

§3. GENERALIZED WEAK-TYPE INEQUALITIES. The results of the first two sections

have been concerned with rearrangements and hence with the magnitude of the

function. We now want to consider other characteristics of the function such
as its smoothness. DeVore-Riemenschneider-Sharpley [7] made the interesting
observation that while magnitude and smoothness are unrelated, the analysis
in the two situations is exactly the same. Indeed, for the periodic Hilbert
transform H there is the inequality [29, p.1211

w(Bf:t) . e wlfss) 1 w(f;s) ds >
(3.1) = < c(tfo - ds+ft ) Oic =1,

where w(g;.) is the modulus of continuity (29, p.42] of a function g. This
inequality has exactly the same structure as (2.1){or (2.2)) but with f** (or
f*), the measure of magnitude, replaced by t-lw(f;t), the measure of smoothness,
Proceeding as in Section 2, we obtain the precise analogues of the results in
Corollary 2.1. Thus H : Lip{a,q) + Lip(a,q) if 0 < a < 1; at the endpoints we
find that H : D » C, where D is the Dini class and C the space of continuous
functions; and if feLip 1, then w(Hf;t)/t grows at most logarithmically as
t * 0. 1In fact, by applying the lorentz-Zygmund norms to (3.1), we obtain the
whole spectrum of results corresponding to Theorem 2.3.

The crucial link between (2.1) and (3.1), which allows the abstract
theory to unfold, is provided by the Peetre K-functional [4, Chapter 31. If
ftx0 + Xl' where (XO,XI) is a compatible couple of Banach spaces, then the
E-functional K(f;t) = K(f;t;Xo,Xl) is defined by
(3.2) K(f;t) = f=;nif (”fo“" t tllfln‘( i 0<t <o,

o 1 "o 1

where the infimum is taken over all possible representations f = fo + fl of £
with fofxo and flcxl.

The point is that t-lK(f;L;Ll

= *%k - —
oL ) =f (t) and ¢t 1K(f;t;(‘.,(‘.(l)) ~ e 1w(f;

t) 4, Chapter 3!. Hence, both (2.1) and (3.1) involve particular kinds of

K-functionals related by means of a weak-type inequality.

DEFINITION 3.1 [7]. Let (xo,xl), (YO,YI) be compatible couples of Banach
spaces. Suppose 1l = P, 3 Py Sw. 1 < qo, q1 S o, . A B 9y and let ¢ be the
corresponding interpolation segment (cf. Definition 2.2). Let T be a quasi-

iinear operator carrying Xo + X, into Yo + Y. hen T is said to be of

1 1
(generalized) weak-type g with respect to (XO.XI) and (Yo’Yl) if

(3.3)

K(TE305Y ,7 ) [x(f;(.);x

1 o’"l)
- < cS{(a) T ee—— (), 0 £ =,

holds whenever the right-hand side is finite.
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Once such an inequality has been established, the mapping properties of
T are obtained as before by applying Lorentz-Zygmund norms and obtaining
results analogous to Theorem 2.3. We shall not discuss }he mapping properties
in any great detail here. Instead, we shall try to convey some of the flavor
of the theory by pointing out some of the interesting weak-type inequalities
and the phenomena they control. For further details, see DeVore-Riemensch-
neider-Sharpley [7], or the survey article [3].

The smoothness spaces derived from Lp, namely the Besov spaces B;’a, are
defined in terms of the k-th order LP-modulus of continuity

sup

(3.4) w (530 = SR par g,

where A: is the k-th power of ch? difference operator (Ahf)(x) = f(x+h) - f(x).
It is a well-known result that 3;’3 is independent of the order k used in its
definition, provided only that k > A {4, Chapter 3]. Lying beneath is a weak-
type inequality known as Marchaud's inequality [16]. We consider only the
simplest case, involving 0 < A < !l and k = 1 or 2. The trivial "direct"
estimate

(3.5) wz(f;t)p < ZmI(f;t)p

follows directly from the definition (3.4). The corresponding "inverse" result

is given by Marchaud's inequality:

-1 : - SHE— 3
(3.6) £ uy (E30) ) < el f] + { s w,(£38) ) ds/sl.
Now the Besov space Bz’a results from applying the Lorentz Ll,(l-k)’a norm

to t-lmk(f;t). Clearly, in view of (3.5) and (3.6), it is immaterial which of
k=1or k =2 is used, provided only that the averaging operator f: (.)ds/s
remains bounded; as we have noted previously, this is the case when 1/(1-}) <
=, that is, when A < l. When A = 1, the averaging operator is unbounded and in
fact it is well-known that in this case the spaces corresponding to k = 1 and

k = 2 no longer coincide (cf. [29, p.47]).

Note that since the K-functionals on the left- and right-hand sides of
(3.3) are not necessarily the same, the inequality can store important infor-
mation even for the identity operator: Marchaud's inequality is an example.
Another example arises in the Sobolev-type embedding theorems for Besov spaces.
Here we want to compare two k-th order LP-moduli but this time with k fixed

and p varying. The inequality reads
- - ol t -6 - "\ < =
(3.7) mk(f,t)q < Lfo s mt(f.s)pds/s, 0 <t 5
where 6= n/p — n/q (n the euclidean dimension) and q > p [7]. The usual

embeddings of B;’a

all follow directly by applying Lorentz-Zygmund norms to (3.7). A variant of

into B:’b, together with the logaritimic end-point estimates,
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(3.7), in which the modulus on the left-hand side is replaced by f**, produces
embeddings of Besov spaces into rearrangement—invariant spaces such as A Lqé,
etc. [7].

The Bernstein-type theorems on the absolute convergence of Fourier series
[29, p.243] are also coantrolled by weak-type inequalities. Such theorems
relate the magnitude of the Fourier coefficients ;(n) to the smoothness of f.

The relevant inequality is [7]

)0y < c%(ﬂfﬂl + fi/t w(fss), ﬁz 5 1<t s m,
SI!p

valid for feL®, 1 < p s 2.

The weak-type inequalities also play an important role in approximation
theory. For example, when one of the K-functionals in (3.3) is chosen to
measure smoothness, the other can be replaced by the closely related "degree of
approximation" functional E(f;t). Thus, in LP(T) for instance,

E(f5t), = inf {Hf-ng}

where the infimum is taken over all trigonometric polynomials g whose degree
does not exceed [t]. The corresponding weak-type inequalities give rise to
some of the classical “direct” and "inverse" approximation theorems; see [7]
for details.

The moral of the last three sections, if it is not already clear, is that
of the numerous phenomena in analysis that can be interpreted in terms of an
operator acting between a pair of spaces, a great many are controlled by a
weak~type inequality relating an appropriate pair of K-functionals. Further-
more, when it is known that the operator is unbounded at one or other of the
"endpoints" (and this, after all, is what the Marcinkiewicz theorem is all
about), then it is often possible to anticipate, by including one or the other
of the averaging operators t—l fg(.)ds, f:(.)ds/s, exactly what form the weak-
type inéquality must take.

We shall see some good examples of this in the next section when we turn
to the theory of Hp—,paccs and BMO. The basic characteristic of Hl—functions
is not smocothness or magnitude, but something in between (one hesitates to
call it analyticity.). Whatever one calls it, it is expressed in terms of
the grand maximal function Mf, and this (more precisely, QVf)**(t)) is
equivalent to t_IK(f;t;Hl,Lw) i9]. Similarly, the basic characteristic of
BMO-functions is oscillation which is expressed in terms of the sharp-function
f#. We shall show (in Section 6) that fs*(t) is equivalent to t-IR(f;t;Ll,BMOl
These key descriptions of the K-functionals lead to some interesting weak-type
inequalities which play a fundamental role in the theory. For example, the
weak-type inequality (4.15) relating magnitude (f**) and oscillation (f#*)
will lead us to a simple proof of the John~-Nirenberg lemma and other results.
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§4. INTERPOLATION BETWEEN L1 AND BMO. The space BMO of functions of bounded

mean oscillation was devised by John-Nirenmberg '15] for.the purpose of studying
regularity properties of solutions of elliptic partial differential equations.
BMO is the Banach space (of equivalence classes modulo the constants) of all
locally integrable functions f on R® for which

[l £ 5o = sup QClE - 06D
Q

is finite, where Q(f) = IQ]_IIQf(y)dy and the supremum is taken over all cubes

Q with sides parallel to the coordinate axes.
The BMO-norm measures the oscillation of f on all of R°. The local
oscillation is expressed by the "sharp-function”
(4.1) £ x) = sup 0CJE - QO]
Qax
which was introduced by Fefferman-Stein [10]; the supremum is now taken over
only those cubes 0 which contain the point x. Clearly, feBMO if and only if

f#ch, and

e
(4.2) €l g = I £71.-
The space BMO could just as well be defined in terms of the quantity
(6.3) £2(x) = suplinf Q(lf-c])};
Qx €

indeed, it is easily verified that

(4.4) £2 () < f#(x) s 26° ().

Note that as an immediate consequence of (1.1) and (4.1) we have
4.5) £ (x) = 2M6G0) 5 2) 8] .

Together with (4.2), this shows that L” is continuously embedded in BMO.

One reason for the importance of BMO is that it arises as (essentially)
the range of certain singular integral operators, such as the Hilbert or Riesz
transforms, acting on 2t Consequently, the interpolation properties of BMO
are also of much interest. Now while BMO contains Lw, the fundamental John-
Nirenberg lemma (of which we give an alternate proof in Corollary 4.6) shows
that 1t is only "slightly” larger than L Hence, we might expect the (8,q)-
interpelation spaces for the pairs (LI,Lw) and (LI,BMO) to be the same. This

result, namely
L%y we P ok =y
(4.6) (L ,L )B,q L™ = (L ,B.\!O)B’q , 0 1 /p,

valid for 0 < 6 < 1 and 0 < q = «» , is due to Hanks [12],

While the first equivalence in (4.6) is, of course, well-known [4, p.1861,
it will nevertheless be instructive to examine its proof. Recall [4, p.167]
that f belongs to the interpolation space (Xo,xl)e’q if (f:tt—ex(f;t)]th/t)llq
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L

= * %
is finite. Since K(f;t;L ,L ) = tf (t) (4, p.184], we see that the norms in

(LI,L”)e a and .79 are

S et P ontaeole, (e P ey 1% VY, 6 . 11,

respect ively. That the first dominates the second is clear from the "direct"
inequality
* *k
f S f -
But in the other direction these quantities are related by the "inverse" weak-
type inequality
EY 1.t %
£() s f, £ (s)ds .

P4

Hence, by applying “norms, we see that the two spaces coincide whenever the

averaging operator is bounded on qu, that is, whenever p > l.

While this is an admittedly trivial example of a weak-type inequality, it
does point out a direction to be followed in establishing the more complex

second equivalence in (4.6). Indeed, the inclusion (LI,LQ) = (LI,BMO)e -
>

0,9
follows immediately from the direct inequality

.7 K(f;t;Ll,EMO) < ZK(f;:;LI,L°),

which itself follows from the definition of the K-functional! and the obvious

estimate“fﬂsM < 5lfum- By analogy with the previous situation, what is

0
needed to establish the reverse inclusion is a weak-type inequality, inverse
to (4.7). This we shall do in Corollary 4.4. 1In the process, we shall estab~
*
lish a weak-type inequality which is inverse to the direct inequality (f#) <

x
2(Mf) , embodied in (4.5). This is the content of the next theorem.

THEOREM 4.1. If feL' + L=, then

ds

* w % E
(4.8) M£) (t) < cf((f ) (s) =, + (M) (+ =), 0«<t<wo,

* *
Proof. The open set i = (f# > (f#) (2e))} u {Mf > (Mf) (2t)} has measure

(4.9) 2] < 4¢.

Applying lLemma 1.1, we obtain a covering of & by cubes Qj,j - 1,2,..., with

pairwise disjoint interiors, such that each Q, has nonempty intersection with

i
2°, and I|Q.] = 2%la]. If F = (u Q.)€, define
=2 TR |
] ]
= N[ f-Q._(£)1! n h=Ff 0. (f + Y.
g : -Q]( ) ij o )ij o

Then f = g + h, and so

(4.10) M) (e) = o) (&) + [Inll, < 3" Mg+ Il .
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since M is of weak-type (1,1). For any point xitanQc, we have Qj([f—Qj(f)I) =
* -
f#(xj) 3 (f#) (2t). Hence, by (4.9) and Lemma 1.1(c),

(4.11) leliy = zlo,le; lea (e)])
P

:1oj | (f#)*(Zt) < 4.2%¢ (f#)*(z:).
j

A

On the other hand, Q, (|£]) = ¥f(x) = ™£)* (2t), and so
(4.12) Ib], = max {jjfxy],» sup Qj(zf[)}
J

% *
< max {”(Mf)xp”m’ M£) (2e)} = (MF) (2¢).
Combining inequalities (4.10), (4.11), and (4.12), we obtain

(4.13) OE) (2 5 462 (28) + ) 2y,

Iteration of (4.13) N times, with 2kt replacing 2k-1t, k=1,2,...,N, gives

MY () = 461 ey Koy + om) oMy
k=1
But since (f#)* is nonincreasing, the sum can be estimated in terms of an
integral: N
(4.14) o) () < 8.6" [2 ey )% + ey 2.

Inequality (4.8) now follows by letting N tend to infinity.

COROLLARY 4.2. If fel! + L”, then
%* %* *%
(4.15) £7%) < c{f:(f#) (s)-‘-lﬁ +f (+ »)], 0 <t <e,

%
Moreover, if f (+ &) = 0 (in particular, if fel” for any r < «), then there

are constants ¢, and c, independent of f such that

1

A #
(4.16) clﬂ fhpq S "f :p(; < Czﬂf"pq, l<p<e (c« q< e,

Proof. The inequality (4.15) follows directly from (4.8) and Theorem 1.3.

We introduce the notation P and P' for the averaging operators

(4.17) P(E)(e) = +f° £ (s)ds
and
(4.18) P = [T £ ()% .

B ook
From (4.5) and (1.4) we have (f#) (t) = ¢f (t). Hence, applying L norms

and using Hardy's inegquality for P, we obtain Hfﬂﬂpq < c[fﬂpq, provided
l < p = . In the other cdirection, we note that f**(fw) = 0, by hyporhesis.

* * ok . # * i PaQ -
Hence, by (4.15), f (t) = £ (t) = ¢P"(f ) (t). Applying L'*-norms and using
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Hardy's inequality for P', we now obtain nflpq 3 c"f#gpq, provided 1 = p < = ,
This completes the proof.

1

*
It will be shown in §6 that K(f;t:L",BMOQ) ~ t(f#) (t). All that is

needed at the present time is the "easy" half of this estimate:

LEMMA 4.3. If chl + BMO, then

—TT

# * 1
{(6.19) t(f ) (t) = eK(f;t;L

,BMO), O < t < o -
. - 1 # # #* $:0
Proof. If f =g + h, with geL” and heBMO, then f° =g +h" =g + IIWBMO’
* *
S0 t(f#) (t) = t(g#) (t) + tﬁhaBMo. Using (4.5) and the weak (l,1) estimate

*
for M, we obtain t(f#) (t) = 2-3“}]3"l + tih"BMo' Taking the infimum over all
decompositions [ = g + h, we get the desired inequality (4.19).

Now we are in a position to establish the weak-type inequality which is

inverse to (4.7), and hence to identify the interpolation spaces (LI,BMO)e q
, -

COROLLARY 4.4. The identity operator is of generalized weak-type
[1,1;=,=) with respect to the pairs (LI,BMO) and (LI,LQ), that is,

I = 1 ] o
K{E-eiL L) s R(f,s;L ,BMO) ds . lim K(f:N:L",L )

2 LA < LI 3 B 2 2 i3 > !
(4.20) - e, 2 e B N )
Consequently,

(4.21) (L1 Lw) = (Ll BMO) 0<B8 <1 0<q=e,
. » e’q > O,Q’ »

Proof. Inequality (4.20) follows from (4.15), (4.19) and the fact that
= *x
K(f;t;Ll,L ) =tf (t). One of the inclusions in (4.21) is given by (4.7) so
we need only show that (LI,BMO)B q o (LI,Lw)e a First suppose ftLlﬂBMO.
r >

RS
Then £ (+ =) = 0 and so the last term in (4.20) vanishes. Applying the
tPlnorm (with o = 1-1/p) to (4.20), and using Hardy's inequality for the

operator P', we obtain

el | o <cff] | ; ferlneMo.
(J. ,L )B,q (L ’EMO)g,q
But LIHBMO is dense in the interpolation space (LI,BMO)6 - 4, Chapter 3] for
?
0 < g <=, so the inequality persists for all fE(Ll.BMO)6 < This estabiishes

>

(£.21) for q < = . The remaining case q = @ is then settled by using the

refteration theorem (4, p.1771.
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Now let us show how the John-Nirenberg lemma can be derived from the
weak-type inequality (4.15). Actually, what we need is.a "local™ version of
(4.15) relating to a fixed cube Q. At the same time, however, we may as well
establish a more general inequality which will also give us basic information
concerning the Lp’A spaces [22]. For a fixed cube Q, and 0 < a < 1, let
O = e {0 @ dlean () D Iy ),

Q Q'cQ
xeQ'

f

and
M £)(x) = sup {Q"([£]) Iy (x).
0 Q' Q
xeQ"

The local version of (4.15) is as follows.

LEMMA 4.5. Suppose Q is a fixed cube in Rn, possibly R" itself, and let
O = a = 1. Then there is a constant ¢, depending only on the dimension n, such

that for each locally integrable function £ on R",

Q]
.22)  (Ex0 e sdf N s ™ 8 o], 0 < <48l
t Q = 2

Before proceeding with the proof of Lemma 4.5, let us examine some of
its consequences. Note that (4.15) is in fact the special case of (4.22)
corresponding to Q = R” and @ = 0. In the resulting inequalities (4.16), which
are due originally to Fefferman-Stein [10]), the non-trivial assertion is that
f#ch implies chp, for 1 < p < ». The John-Nirenberg lemma can be regarded
as the limiting case p = = of this result: it asserts that if fsch(i.c., fe

BM0O), then £ is "locally" exponentially integrable.

COROLLARY 4.6 (John-Niremberg [15]). Suppose f is locally integrable on
R” and let Q be a fixed cube in R". Then

lal
(4.23) f(f—Q(f))xQJ**(t) s cf (fg'o)*(s) qg . 0 <t < lgl-.
t

If £feBMO, then

@ =[50, = sw Q" (le" (O] < =,
Q'<Q
and
(4.24) f(f—Q(f))xQ]*(t) < cK(Q)log+(zfng 5 0<t <o,

In terms of the distribution function, (4.24) asserts
-
cK(Q)

(4.25) |[{xcq = |f(x) - Q(f)] > A} = 2|Qlexp( ; 1 0<}i<e,
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Proof. The inequality (4.23) follows by applying (4.22) to the function
#,0)*
Q

’o(x), for every xeQ, that is, on a set of

f - Q(f). The resulting constant term Q(|f - Q(£f)]) does not exceed (f
(la]-). Indeed, Q(|f - Q(E)[) < fg
measure |Q|. Since a function and its decreasing rearrangement are equi-
distributed, the result follows. But now (fg’o)*(|Q[ -) is dominated by a
constant multiple of the integral in (4.22), since t < [Q|/2. This establishes
(£.23). The inequality (4.24) is an easy consequence since g* < g** and

[(f - Q(f))xQ]*(L) = 0 for t > |0]. Finally, (4.25) is an equivalent re-
statement of (4.24) since the decreasing rearrangement and the distribution

function are mutually inverse.

A
The space 1P (cf. [22]) consists of those locally integrable functions

£ on R for which the norm (modulo constants)
1-3/ 1
[l £l o, T SuP {|a} e - ) [P} /p’ lsp<w,
L™ Q

l,n

is finite. Clearly, L = BMO and se¢, by analogy, the space Lp,n, lspsa>

is often denoted by BMO(p).

COROLLARY 4.7 [15]. For 1 < p < = , BMO(p) = BMO, with equivalent norms.

Proof. The inclusion BMO(p) < BMO results directly from (4.24) and the fact
= P 2 : : 3 . -
that IZ (log u)*dufu” < » . The opposite containment is an immediate con-—

sequence of Holder's inequality.

COROLLARY 4.8 (Campanato [6], Meyers [17]), Suppose I S p < = and

n<2sn+p. Then
LPod o Lip(a), = (A -n)/p,

with equivalent norms.

Proof. Note that 0 < @ = 1. Tt is easy to see that Lip{a) ALT PR
ftLip(a), then for any xcQ,

1
60 - Q)| = Tarlfgl£6) ~ £ Iay] < efe] 1ol

from which the finiteness of the LP*"-norm follows. In the other direction,

Holder's inequality gives

(4.26) £%x) < sup {[Q'l"“/“Q'(]f - q'(6)|Py/P} < I £ . X €,
Q 8. y hr p)A
Q <Q L
i xeQ'
that is, fQ’ is bounded on Q by | £f Dk Using this estimate in (4.22)
I, o
{applied to € - £ rather than f, and with t+0), we find that

Q

ve/n

FE - £dxply, = clfl 50l
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Hence

!f(!) - f(Y)' = 2Cufl p’AlQIa/n s X,5€0,

and so f ¢ Lip(e). Note that if K Q) dénotes the supremum of the left-hand

side of (4.26), then the same argument produces the last estimate with “‘” Sy
’

replaced by KG(Q) Hence, if K (Q) > 0 as |Q[+0, we see that f ¢ lip (a)

As a final application of (4.22), we complement Corollary 4.7 by showing
that BMO(p) = BMO, for 0 < p < 1 (cf. [12]). Let

%.27) P(x) = sup {inf Q'([f - c.. |2 Phy. (x).
Q Q'«q Q" Q Q
xeQ'

The space BMO(p) consists of those f for which "fpn", < ®

COROLIARY &4.9. If 0 < p < 1, then
(4.28) BMO(P) = BMO,

and

P P
(4.29)  K(f; : :L ;4) {f (K(f3s;L BMO)J Ss ., (£1Py** s =)y /P

Proof. Holder's inequality gives

(4.30) (]f[P)g’O(x) < 20£8 G0 1P,

since {e(x) P = [cP] s |£(x) - c|P for 0 < p < 1. Using (4.30) in the
inequality (4.23) (applied to lf!p instead of f) we obtain

@3 AP @ < ctf R P S roqePy, o<l
Now replace f by f—-cQ and estimate fg from above by fpn to get
2
= * P P 4 2]9‘
Ir(f CQ)XQ] () < ¢ "fBEMO(p) log ( . ).

Taking p-th roots and integrating from O to |Q| we find that lf"BHO <
The reverse inequality follows immediately from Holder's inequal-

1
cll €]l BMO (p) "
ity. This establishes (4.28).

The inequality (4.31) with Q = R" gives

(4.32) {%I; £ (s)Pas} < eif, (f"n)*(s)p 9§-+ (E1P* 4+ w1, 0<t<m,
' R

1/p

Py rtp 0 S -l
But K(f;t;L°,L ) ~ {J £ (s)"dst™'", so taking p-th roots in (4.32) and

changing variables t » P

-P
K(f:tg: L) SC{r'
t “tP

we get

(<2, )" (s)P 98 ds + (P =1
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This, together with the estimate

K(£:e:L° BMO)
t ’

%.33) ) P s ¢
R

establishes (4.29). The proof of (4.33) is exactly the same as that of (4.19),
but uses the equivalence of BMO and BMO(p), 0 < p < 1, as well as the simple

fact that gpn(x) < H(Igfp)l,p(x).
R

We close this section with a proof of Lemma 4.5. Since it closely follows

the proof of Theorem 4.1, we shall be brief.
Proof of Lemma 4.5. If 0 <t < |Q|/2, then the set

g = {x : fg'u(x) > (fg’a)*(2t) or (M .f)(x) > (Mnf)*(Zt)}

Q Q
has measure not exceeding 4t. Since QQ < @, the remark following Lemma 1.1
shows that there is a covering {Qj} of Qb by cubes Qj, with pairwise disjoint

f{nteriors, such that each Qj is contained in () and has nonempty intersection

with 0-2 ., and zloil < 2" |

Q]. If f =g+ h, then

0
’ *% -1 A
(4.34) (fxq)  (v) <t “faxgl; + Iyl
and
* =y
(4.35) (MQf) (t) = 30, ”ngHI 4 uthuw =

since M is of weak type (1,1). With F = Q-(qu) and

= ‘[ : - 2. < )

g i f-Oj(f) ij y h ;Ql(f)ij t fup
we have
4.36) ety = zlag 1M/ 1o, 1™/, (le-, 8 |3

b
s @l DAl A ey s e 6 %" ey,

and
(4.37) IIn] = max{s9p Qj(lf!). [foREE: (HQf)*(Zt).

J
Using (4.36) and (4.37) in the inequalities (4.34) and (4.35), we obtain

(4.38) Exg) ™" (e) < et/ ek 2y + 01,5" 2¢)
and
(4.39) (MQf)*(t) < cz“/“(fg"‘)*m) + (qu>*(2:>.

i 2N+1

Let N 2 1 be the unique integer satisfying 2Nt < lql < t. Using (4.39) to
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estimate the right-hand side of (4.38), and iterating this process (N-1) times,

we find N .
* -
(4.50) <fo)**(c) < zczk:>“’“(fg’“) 2%ty + (Mdf)*(2“c>.

k=1
N
2 s

The sum can be estimated by the integral ft tsa/n(fg'a) (s) 2% » and the

constant term by
0,6)"@'1) s IuEx T (2N < 3P @)Y exdly < 2.3%dED.

This establishes (4.22) and hence completes the proof.

55. INTERPOLATION FOR (HI,I.‘”) AND (HI,BMO). Rividre-Sagher [24] showed that
the (6,q)-interpolation spaces for the pair (HI,L¢3 are the same as those for

1 =
(L',L ), namely

(5.1) &', 1) 1?4 O ey, Oi<lg <iw

0,9
where 6 = 1-1/p. Subsequently, Fefferman-Rivigre—Sagher [9] used the newly-
developed methods of the Fefferman-Stein real-variable Hp-theory [10] to

determine the K-functional for HF and Lw. Thus

. P
K(f;e:8°,1.7) ~ {)'f) G!ff)*(s)pds}llp.

where ¥f is the grand maximal function of f. It follows directly from the
weak-type (1,1) and strong-type (=,=)} properties of ¥ that

B i
(5.2) K(g’tén 2L2) s c %-fg f (s)ds = ¢ % f; Kﬁfis;L¥)La3§§ -
s s

This inequality asserts that the identity operator is of generalized weak type
(1,1;%,#) for the pairs (LI,LQ) and (HI,LQ). This weak-type inequality is the

inverse of the direct estimate

(5.3) I{(f;f.;l.l,I.,‘w)_t A K(f;t;HllLfb
t = t >

which holds because |[f|| , = [|£] ;- Note that (5.3) and (5.2) (via Hardy's
L B

inequality) imply (5.1).

In this section, we present a proof of (5.2) using only the weak=type
(1,1) and strong-type (2,2) properties of the Riesz transforms. This gives a
good illustration, as does the Rividre-Sagher result, of the fact that the
(9,9) interpolation spaces, for 0 < 0 < 1, can often be determintd without
specific knowledge of the X-functional. Such knowledge is usually required,
however, in dealing with the situation at the endpoints 6 = Q or 6 = 1.

Furthermore, once (5.2) has been established, we can combine it with the weak-
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type inequalities from the previous section and thereby determine the (6,q)
interpolation spaces (0 < 8 < 1) for Hl and BMO (which, once again, are the,
Lorentz spaces 1.Pq r121). Finally, we present a basic {necuality for the
Hilbert transform (Corollary 5.5) which, besides storing information relative
to Hl and BMO, implies the rearrangement-invariant inequality (2.1) of 0'Neil=-

Weiss.

DEFINITION 5.1 [10]l. The Hardy space Hl(Rn) consists of those Ll—

functions f whose Riesz transforms
¥
R.E(x) = ¢ [ _ £(x-y) —— dy, Jom B2 om ity
j n Rp .

also belong to Ll(Rn). Hl is a Banach space when given the norm

z IR
z R.f 2
el s

il o =Nl , +
H L 3
1 %%
The right-hand side of (5.2) is finite for all t if and only 1f [ £ (t)
dt < =. Now it is not hard to show (cf. [2, Corollary 10.2], for example) that
this condition is equivalent to membership of f in the space L log L + LQ, that

is, f is representable as a sum f = g + h, with h ¢ L" and
[ let)10g 2 + {gG)|)dx < = .
R

e @
Indeed, the functional fif (t)dt defines an equivalent norm on L log L + L .

The elementary argument used in the oroof of this equivalence shows, in

particular, that

' **k
(5.4) [ le(x)[10g€2 + |gG)Ddx < |lg]] 1log (2 + |l gl )+ fi g (t)dr,
‘“ L L

for any locally integrable function g whose support Q has measure at most one.

We shdll need to use this inequality in the proof of the next theorem.

THEOREM 5.2. If f ¢ L log L + L , then

A

(5.5) t“IK(f;t;Hl,LQ) < ct-lfz f**(s)ds, 0 <t < o,

Proof. Since the Riesz transforms commute with dilations, it is enough to

establish (5.5) for ¢t = 1. Also, by homogeneity, we can assume

rl *

(5.6) Yok *(s)ds < 1.

Hence, it will suffice to find a constant c, depending only on the dimension

n, such that

1] @
(5.7) K(f;1:;B°:L ) =< ¢,
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for all f satisfying (5.6). This will be done by producing g ¢ Hl and he L

with f = g + h and
(5-8) el 4 + Il o < c.
E L

Now the open set 0 = {(Mf)(x) > (Mf)*(l)} has measure at most one. Let
{Qk} be a Whitney decomposition [27, Chapter 1] of Q : the cubes Q, therefore
have union 2, have pairwise disjoint interiors, and satisfy (Bn.Qk)ch # ¢,
where Bn = 10:11/2 (here Bn.Q denotes the cube concentric with Q, having

Bn-times the diameter of Q). If F = Rc, define
=5 [f - f)] he I f + fy..
2 X Q, (f) ka, Q¢ )ka Xp

Since ﬁn.Qk meets F, we have
*
lo (6] = @ (le) = 808 @) (If]) < & () (1).

Hence, by (1.4) and (5.6),

(5.9) lo, (8] < (3sn)“fi £ (s)ds < 380" 6 (s)as = 38" .
Similarly,
(5.10) lexll, = e, s o)y < 37,
and so (5.9) and (5.10) combine to give
(5.11) Injl_ = (3sn)°.
To estimate the Hl-norm of g, we first note that
(5.12) g (s) Scf (s), O0<s<l.
Inde¢d, if E is any subset of 2 with [E] = E, then
Jelel =2 [ 8- =z [y, I£] + 2 [Eoq, |6l ¢e, .0 d2]).
k E k X k

an

*
Since each cube (Bn'Qk) meets uc, we have, using (1.4), (Bn.Qk)(ffI) < (Mf) (1)
n *%
= 3f (1). Hence
Z n_*%x K t‘* n %%
Jelsl = Jgle] + [E[ G387 (1) < [ £ (s)ds + £ (38 )7 (o).
Taking the supremum over all sets E of measure t, we obtain (5.12) with

n
c (38n) + 1.

Next we use the following classical estimate for the Riesz transforms of

a function b with mean value zero and support in a cube Q:

(5.13) HijH L S c(fqlb(x)ilogcz + |bx)|yéx + oD, Fim L2 oo
L

The proof uses a standard Marcinkiewicz-type decomposition argument (cf. [8,
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vol. II, p.1661) involving the weak-type (1,1) and strong-type (2,2) proper-

ties of the Riesz transforms. We omit the details.

Applying (5.13) to the functions ng , we find
k
n
el ; sllel; + &z iR, (g, )l
ot i B

s "gq} bt i{IQkIS(X)Ilog(2 - Eg(x)[)dx + [le}

= gy + etfplsGliop@ + Iz D) ax + faf1.

Since [nl < 1, we can apply (5.4) to obtain
ese
lely < ctllell jtog2 + llgl ) + 2 g™ wae .
1 L L
& ' 1 = 1 %%
Hence, using the estimate ﬂg” W Io g (t)dt = fo g (t)dt, we see from (5.12)
L

and (5.6) that [zl  is bounded from above by a constant (depending only on n).
H

This completes the proof.

For the corresponding function spaces on the unit circle, Zygmund's
theorem (Corollary 2.1(b)) asserts that L log L 5_81. This result is decidedly
false in R because, for example, Hl(Rn) contains no positive functions.

There is however the following natural analogue in R" of Zygmund's theorem,
which follows directly from (5.5) with t = 1.
1

COROLLARY 5.3. LlogL+L cH +L .

As we remarked above, an immediate consequence of the previous theorem
and Corollary 4.4 is that

1

(5.14) @' ,L%, o = P9 = @l mo) 0<8<1, 0<qs=e,

8,q’

where 6 = 1-1/p. But the embeddings o < BMO and Hl < L1 imply

1l = 1 1
H ,L < (H ,BMO < (L ,BMO .
( )egq — (B )e:q —'( . )e»q

Together with (5.14), this produces the following result, due to Hanks [12].

COROLLARY 5.4. If 8 = 1-1/p, then

@,m0), =1P%,  0<e<1l, O<qsw.
8,9

For any operator T carrying HI into L1 and L~ into BMO, it follows easily
(cf. [4, p.180]) from the definition of the K-functional that



224 COLIN BENNETT & ROBERT SHARPLEY

1 1

K(Tf3t;L°,BMO) < cK(f3t;H ,L7).
Hence, using the Fefferman-Rividre-Sagher result and Lemmaz 4.3, we obtain, for

the Riesz transforms in particular, the following interesting inequality.

COROLLARY 5.5. If f ¢ H + L°, then the Riesz transforms satisfy

(5.15) r(ajf)’l*(c) < cE) (L), Qi< paiatny | ymaT gl

where ¥ is the grand maximal function.

*%
Let f be a simple function so, in particular, (ij) (+ =) = 0. Applying
(4.15) and (5.15) to ij we obtain

[2@,0")s 5 f] TR O () 2 < [Ty (o) 22

Hence (5.5) and a change in the order of integration gives

(5.16) o@D (a8 < otf} ™ @an + [T £ ) Yy .

This, in the notation of [2], simply asserts the boundedness (on the simple
functions) of Rj from the space L log L + L°°1 into L1 + L. Since the simple

functions are dense in L log L + L”l, the inequality (5.16) persists for all f.
A simple dilation argument and the fact that the Riesz transforms commute with
dilations now gives the basic rearrangement-—invariant inequality for the

Riesz transforms, due to 0'Neil-Weiss [21] (which we originally discussed in

(2.1) in the context of the unit circle).

COROLLARY 5.6. If f ¢ L log L + Lwl, then the Riesz transforms satisfy

(5.17) (ij)**(c) s e{EfTe (s)ds +[TE (s) i%}, Ot AL %

The fundamental inequality (5.15) thus stores not only the information

R.. & Hl -+ L1 and Rj s L > BMO, but also, via (5.17), the rearrangement-

j

invariant behavior of the Riesz transforms. Since a potentially "deeper™
inequality could result from encoding the Information Rj : Bl »> HI and
Rj : BMO + BMO, it would seem to be a problem of some interest to describe in

concrete terms the K-functional for the pair (Hi, BMO).

§6. THE K-FUNCTIONAL FOR L1 AND BMO. 1In this final section, we show

P
that the R-functional for Ll and BMO can be {dentified with L(f#) (v).
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THEOREM 6.1. There are constants ¢, and c,, depending only on the

1 22
dimension n, such that for any £ ¢ (L1 + BMO)(R"),

¥ % 1 # *x
(6.1) clt(f } (t) < K(£;t;L ,BMO) = czt(f ) (v), 0<t<o ,

Proof. The first inequality in (6.1) was established in Lemma 4.3. In order
to prove the second inequality, we must exhibit g ¢ L1 ané h ¢ BMO such that
f =g+ h and

(6.2) fell , + el < e,reeh)T o).
L BMO

s
With t fixed, the open set @ = {x : f#(x) > (f#) (t)} has measure not
exceeding t. Let F = a° and 1let {Qj} be a Whitney covering of 2 (cf. [27]).
Thus, the cubes Qj are dyadic and satisfy

(6.3) =uqQ. ;
i 3

(6.4) [anle = Q, unless j = k;

(6.5) diam (Qj) < dist (Qj,F) < 4 diam (Qj)’ y P B SRR

If a-Q (« > 0) denotes the cube concentric with Q but having a~times the

diameter, then (6.5) shows that with 8 = 8(n) = 10n1/2,

(6.6) (B-Q.) n F # ¢, s [l 5 8 SR

J
We shall denote by di the cube B-Qj -

The decomposition to be used in (6.2) is given by

(6.7) g(x) =L (f(x) — Q_(f))x, (x)
3 1Yy
and
(6.8) h(x) = ? Qj(f)xqj(x) - f(x)xp(x).
For any cube @ (so 6 = B-Q), it is clear that
(6.9) QUi - B[y = 28" QUJf - U ]).

Now, for every Whitney cube Q_, we see from (6.6) that éj meets F, on which

J
= — %
the oscillation is small. Hence Qj([f - Qj(f)l) < (f#) (t), for every j. Com=-

bining this with (6.9), and using the properties (6.3) and (6.4) of the

Whitney decomposition, we obtain the following estimate for the Ll-norm of g:
" ) ~ |¥ * - - *

(6.10) flell | = zle o (| - Q. ¢B)]) = 2™ £ |Q,|(£") (¢) = 287 (¢H) (o) .

Before cstimating Hh“BMO we shall need some further properties of the
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b

is the set of indices corresponding to Qj and every cube'Qj that "touches"
o

Qjo' The following estimate, which is a consequence of (6.5) and the dyadic
nature of the cubes, shows that all of the cubes Q_, j ¢ Jo, have approximately

Whitney cubes Qj' For a fixed index jo, let Jo = {j:=2Q n Qja # ¢}. Thus Jo

3
the same size:
! 3 < i < 3
(6.11) Z-dxam (QJO) < diam (Qj) < 4 diam (Qjo), A - Jo .
In particular,
(6.12) 3.,Q < v Q <9.Q,
2 jo 1:J0 3 o

*
The required estimate for h in (6.2) is that HhuBMO < e (f#) (t). For

this, it will suffice to show that there is a constant ¢, depending only on
the dimension n, such that
x #
(6.13) Q(lh = Qh)|) = c(f") (v),
for all cubes Q in R". In fact, if we can find any constant a = aQ for which
. 1 # %
A(Q) = Q(|h - a]) = c(£7) (1),

then (6.13) will follow, by way of (4.5).
Now fix Q and let XK = {k : Qk n Q# ¢}. On each Qk’ the function h is

constant and equal to Qk(f). Hence

(6.14) A(Q) = & lfgvj{fif ifQ (£(x) - a)dx] + —— [ _|£(x) - af dx.

inl “QNF
kek o] Ile X Q)

There are three cases to consider in estimating A(Q):

Case 1. Suppose K = ¢. Then Q ¢ F and we select a = Q(f). Hence
*
A@ = ot - e = (tHh ),

Since Q contains a point of F.

Case 2. Suppose, for some jot K, that

(6.15) diam (Q) < % diam (Qi ).
0
This, and the fact that Qj nQ# ¢, implies that Q i_(3/2)~Qj and hence,
0 o

by (6.12), that Q n F = ¢. We claim that K ¢ Jo, that is, any Whitney cube

Qk touching Q must also touch Q. - The point is that, by (6.15), Q is in the
I

interior of (3/2)-Qjo at a positive distance from the boundary. Thus any Qk’

k £ K, since it touches Q, will intersect (3/2)-Qj0 in a3 set of positive

measure. The first relation in (6.12) therefore shows that Qk intersects some
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Qj’ ijo, in a set of positive measure. But the Whitney cubes have mutually

disjoint interiors, so this implies Qk = Qj’ that is, keJo. Hence X S-Jo' '

Let a denote the cube (B-Qj ) = (1001/2.Qj
0

second term on the right of (6.14) vanishes because QNF = ¢. In the first term

), and select a« = a(f). The
o

we use the trivial estimate le n Q] = |Q], replace the index set K by the

larger Jo, and use the first part of (6.11) to get

|£(x) - Q(f) |ax.

AQ s I _1 [ |f@) - B ]dax s 4" =
AT Q. | jed
o5l ol 387,

IQj

Now |Qj | = 87"|Q] and the second relation in (6.12) shows that the cubes
o

Qj, ijo, are (disjoint) subsets of 6. Eence

AQ = (48" QUE - D) = <as)“<f#)*(n),

since Q contains a point of F.

Case 3. Here K # ¢ and for all keK,

(6.16) 1 diam (Q) € diam (Q).
An immediate consequence is that each Qk' keK, is contained in 9-Q:
(6.17) U, Qe =
keK
Hence, by (6.6), the cube 6 = (98) "Q meets F : a n F# ¢é. Furthermore, by
(6.17), the sets Qk’ kK, and QnF are disjoint subsets of 6. Returning to

(6.14) we thus have

1 Z
—— { I
IQI keK Qk

A

A(Q) [£(x) — aldx + [ _|f(x) - «}

QnF
n
s = [ ]£(x) - ajax = 2B 1 1e(x) - alax.
lo] q el

Choosing o« = a(f), we obtain finally
~, "~ ; ®
AQ = 09" 3]s - ABH D < @ EH ),

since  contains a point of F,

Collecting the results from all three cases, we see that A(Q) =

n, # * n
(98) (f ) (t), for any cube Q € R, and so

Inl_ = 2955 (v .

This, together with (6.10), establishes the second inequality in (6.1) with
1/2

C, = 28“ + 2(92)“. Since § = 10n depends only on n, the proof is complete.



228 COLIN BENNETT & ROBERT SHARPLEY

REMARK 6.2. The key element of the proof of Theorem 6.1 is the construc-—
tion of a conditional expectation of f (namely the function h) which lies in
BMO. The Whitney covering, in which the cubes are arranged in "geometric
progression”, seems to be essential here. Since arbitrary conditional expec-
tations do not preserve BMO-functions, this construction may be of independent

interest.

REMARK 6.3. With only slight modification to the proof of Theorem 6.1,

it is possible to show that the K-functional for the pair (LP,BMO), where

=
0 < p <1, is equivalent to the functional t(fpn) (tp), where fpn is the

R R
Lp-analoguc of the sharp-function defined by (4.27).

REFERENCES
1. R.A. Adams, "Sobolev Spaces", Academic Press, New York, 1975.

2. C. Bennett and K. Rudnick, "On Lorentz-Zygmund spaces", to appear in
Dissertationes Math., Vol. 175.

3. C. Bemnett and R. Sharpley, "Weak type inequalities in analysis", Proc.
Conf. Oberwolfach, Linear Operators and Approximation, August 1977.
ISNM, Vol. 40, Birkhauser, Basel, 1978, 151-162.

4. P.L. Butzer and H. Berens, "Semigroups of Operators and Approximation',
Springer, Berlin, 1967. MR 37 #5588.

5. A.P. Calderén, "Spaces between Ll and L and the theorem of Marcinkiewicz"
Studia Math gﬁ (1966), 273-299. MR 34 #3295.

6. 8. Campanato, "Proprietd di hSlderiantd'di alcune classi di funzioni",
Ann. Scuola Norm. Sup. Pisa 17 (1963), 175-188. MR 27 #6119.

/. R. DeVore, S. Riemenschneider, and R. Sharpley, "Weak interpolation in
Banach spaces", to appear. J. Functional Anal.

8. R.E. Edwards, "Fourier Series", Holt, Rinehart, and Winston, New York,
1967. MR 36 #5588.

9. C. Fefferman, N.M. Rividre, and Y. Sagher, "Interpolation between uP
spaces: The real method", Trans. Amer. Math. Soc. 191 (1974), 75-81.
MR 52 #8909,

10. C. Fefferman and E.M. Stein, P spaces of several variables", Acta Math.
129 (1972), 137-193.

11. A.Garsia, "Topics in Almost Everywhere Convergence", Markham, Chicago.
1970. MR 41 #5869.

12. ‘R. Hagks, "Interpolation by the real method between BMO, Lu(O <@ < =),
and H (0 < ¢ < )", Indiana Univ. Math. .J. 26 (1977), 679-689.

13. G.H. Hardy and J.E. Littlewood, "A maximal function theorem with function
theoretic applications', Acta Math. 54 (1930), 81-116.



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

WEAK-TYPE INEQUALITIES 229

C. Herz, "The Hardy-Littlewood maximal theorem", Symposium on Harmonic
Analysis, Univ. of Warwick, 1968.

F. John and L. Nirenberg, "On functions of bounded mean oscillation”,
Comm. Pure Appl. Math 14 (1961), 415-426. MR 24 #A1348.

G.G. Lorentz, "Approximation of Functions", Holt, Rinehart, and Winston,
New York, 1966. MR 35 #4642.

N.G. Meyers, "Mean oscillation over cubes and Hélder continuity", Proc.
Amer. Math. Soc. 15 (1964), 717-721. MR 29 #5969.

R. 0'Neil, "Les+fonctions conjugées et les intégrales fractionnaires de
la classe L(log L)®", C.R. Acad. Sci. Paris 263 (1966), 463-466. MR 35
$717.

R. 0'Neil, "Convolution operators and L(p,q) spaces", Duke Math J. 30
(1963), 129-142. MR 26 #4193.

R. 0'Neil, "Integral transforms and tensor products on Orlicz and
L(p,q) spaces", J. Analyse Math. 21 (1968), 1-276.

R. 0'Neil and G. Weiss, "The Hilbert transform and rearrangement of
functions”, Studia Math. 23 (1963), 189-198. MR 28 #3298.

J. Peetre, "On the theory of LP** spaces", J. Functional Anal. & (1969),
71-87. MR 29 #3300.

K.E. Petersen, "Brownian Motion, Hardy Spaces and Bounded Mean Oscilla-
tion", Cambridge Univ. Press, Cambridge, 1977.

N.M. Riviére and Y. Sagher, "Interpolation between L~ and Hl, the real
method", J. Functional Anal. 14 (1973), 401-409. MR SO #14204.

R. Sharpley, "™ultilinear weak-type interpolation of m n-tuples with
applications", Studia Math. 60 (1977), 179-194.

E.M. Stein, "Note on the class L log L", Studia Math. 32 (1969), 305-310.
MR 40 #799.

E.M. Stein, "Singular Integrals and Differentfability Properties of
Functions", Princeton Univ. Press, Princeton, N.J., 1970. MR 44 #7280.

E.M. Stein and G. Weiss, "Iatroduction to Fourier Analysis on Euclidean
Spaces", Princeton univ. Press, Princeton, N.J. 1971. MR 46 #4102.

A. Zygmund, "Trigonometric Series, Vol. I", 2nd rev. ed., Cambridge Univ.
Press, New York, 1959. MR 21 #6498.

A. 2ygmund, "Trigonometric Series, Vol. II", 2nd ed. rev., Cambridge
lniv. Press, New York, 1959. MR 21 #6498,



	part2 1.pdf
	part1 1.pdf
	part1 2.pdf
	part2 2.pdf
	part1 3.pdf
	part2 3.pdf
	part1 4.pdf
	part2 4.pdf
	part1 5.pdf
	part2 5.pdf
	part1 6.pdf
	part2 6.pdf
	part1 7.pdf
	part2 7.pdf
	part1 8.pdf
	part2 8.pdf
	part1 9.pdf
	part2 9.pdf
	part1 10.pdf
	part2 10.pdf
	part1 11.pdf
	part2 11.pdf
	part1 12.pdf
	part2 12.pdf
	part1 13.pdf
	part2 13.pdf
	part1 14.pdf
	part1 15.pdf



