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For two pairs of rearrangement invariant spaces D = [(X, , Yr), (X, , Ya)] 
we give necessary and sufficient conditions for pairs (X, Y) to be weak inter- 
mediate for o, i.e., each operator which is of weak types (Xi, YJ, i = 1, 2, 
also maps X boundedly to Y. Spaces A,(X) are introduced and are shown to 
have many of the properties that characterize Lorentz L*‘r spaces. Necessary 
and sufficient conditions in terms of a simple function F(s, t) are given in order 
that (d,(X), A,(Y)) be weak intermediate for o. Other properties of the function 
F(s, t) yield sufficient conditions and necessary conditions for interpolation 
theorems. 

1. INTRODUCTION 

The purpose of this paper is to provide interpolation theorems for 
a general interpolation segment u = [(XI , YI), (X2 , Y,)], where all 
four spaces are arbitrary, rearrangement-invariant Banach function 
spaces. Two developments are necessary to proceed: (a) a general 
form of Calderon’s weak interpolation theorem, and (b) spaces that 
play in the general context the same role as the Lorentz Lpq spaces. 
These ideas are developed in Sections 4 and 3, respectively; Section 5 
combines these ideas in order to obtain some concrete interpolation 
theorems. 

A Banach space X of real-valued Lebesgue measurable functions 
on a possibly infinite interval I = (0, I) is said to be a Banach function 
space over I if 

lg I < lfl a.e. andfEZ thengEXandllgI/ < Ilfll. (1.1) 
f~EX,Ijf,II<M,andO<f,ffa.e.,thenfEXandI]fII<M. (l-2) 
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A Banach function space X is said to be rearrangement invariant 
if m{s / 1 g(s)1 > c} < + 00 for each E > 0 and g E X, and the following 
condition is satisfied: 

if g E X and g’ is any function on I equimeasurable 
with g, then g’ E X and ]I g’ 11 = jl g (I. 

For spaces of this type we will write, in short, X is a rearrangement- 
invariant space. 

Examples of rearrangement-invariant spaces include the Lebesgue 
LP spaces, the Lorentz (1, M, and LP spaces [6], and Orlicz spaces. 

Let X,, Yl, X2, Y, be two pairs of rearrangement-invariant 
spaces. If each linear operator which is a bounded operator from Xi 
to Yi , i = 1, 2, has a unique extension to a bounded operator from 
X to Y, then the pair (X, Y) is said to be strong intermediate for the 
interpolation segment 0 = [(X, , Yi), (X, , Y,)]. The pair (X, Y) is 
said to be weak intermediate for the interpolation segment 0 if each 
linear operator which is a weak-type (Xi , Yi) operator, i = 1,2, has a 
unique extension to a bounded operator from X to Y. 

We do not aim at the maximal generality. One could replace in our 
theorems the interval 1 by any nonatomic u-finite measure space, and 
linear operators by quasilinear ones. See Calderon [3]. 

In Section 2 we give properties of the fundamental function 4, of a 
rearrangement-invariant space X and relate weak-type operators to 
bounded operators of Lorentz (1 and M spaces (see Lorentz [6, Section 
3.51). Section 3 deals with the spaces (la(X) which are generalizations 
of the Lorentz Lpq spaces (see [2,3,7], or [l 11). These may be regarded 
as a combination of an Lp space with Lebesgue measure and of an Lq 
space on (0, I) with measure dt/t. One obtains /l,(X) if one puts 01 = 
l/q and replaces L” by an arbitrary rearrangement-invariant space X. 
We show in Section 3 that /l,(X) is reflexive for all 0 < 01 < 1; in 
fact, the conjugate space, modulo renorming, is represented as another 
(1,(Y) space. In Section 4 we define Calderon’s operator and prove 
its maximality as a weak-type (Xi , Yi) operator (Theorem 4.5). 
Theorem 4.7 gives a necessary and sufficient condition for a pair 
(X, Y) to be weak intermediate for an interpolation segment. In [16] 
Zippin states Theorem 4.7 under the following conditions: L” is dense 
in all spaces X1 , X, , Yi , Y, , X, Y; the fundamental indices satisfy 

A, < _yx, ; and the fundamental functions of the spaces X1, X, , 
Y, , Ya have the property that for some 6 > 0, N > 0 
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and 

~x,Wr,(t) G N * ~x,W&) if s 3 6t. 

We do not require these conditions, but the idea of the proof is still 
essentially Calderon’s [3]. 

We combine the results of Sections 3 and 4 in Section 5. Here the 
question of interpolation is in many cases reduced to calculable 
criteria in terms of the behavior of the function F(s, t) which appears 
for the first time in Lorentz-Shimogaki [8]. The function F is deter- 
mined by the six fundamental functions of the spaces involved; no 
deeper properties of the spaces appear in these theorems. Theorems 
5.1 and 5.2 give necessary and sufficient conditions for the pairs 
(d(X), (1(Y)) and (M(X), M(Y)), respectively, to be weak inter- 
mediate for the interpolation segment u. A sufficient condition for 
(X, Y) to be weak intermediate (and hence strong intermediate) for 0 
is given in Theorem 5.9, while a necessary condition for (X, Y) to be 
weak intermediate for u appears in Theorem 5.7. Theorem 5.6 is an 
interpolation theorem involving the spaces ClJX) which generalizes 
Calderon’s result that (L pr, UT), 1 < r < CO, is weak intermediate 
for 0 = [(D, L*l), (Lpz, D)]. 

In the last section, 6, we compare the methods of Calderon with 
those of Lorentz-Shimogaki (quasiorder +) and Peetre [functionals 
K(t, f)]. If the interpolation segment is 

these methods yield the same intermediate spaces. Also we outline 
the proof that the spaces &(X) f orm a scale, in the sense of Krein and 
Petunin [5], which connects /1(X) and MO(X), the norm closure of 
L" in M(X). 

We will denote by X’ the Banach function space consisting of all 
measurable functions g on I such that 

(l-3) 

is finite, and we denote by X* the conjugate space of X. We will need 
the following representation of the norm of X given by Lorentz and 
Luxemburg [lo] : 

This gives immediately that X” = X. 
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Suppose X is a rearrangement-invariant space and let f E X. Then, 
by definition, m{x (1 f (x)1 > E} is finite for E > 0. We denote by f *, 
the unique, right-continuous decreasing function on I which is equi- 
measurable with / f I. We then have that I/f* IIx = II f I& ; in fact, 

(1.5) 

We can now see that x’ is a rearrangement-invariant space if X is. 
For a function f, if f * exists, we define f**(t) = Jif*(s) ds/t. 

We then write h <f if h**(t) <f**(t), 0 < t < 1. By (1.5), if 
h <f and f E X, then h E X and 11 h Ilx < I] f /Ix. 

We denote by X1 + X, the sum of two rearrangement-invariant 
spaces equipped with the norm 

llf II x,+x, = &$fi II& + llfi IIXJ. (1.6) 
fii:Xi" 

It is clear that Xi + X, becomes a rearrangement-invariant space 
with this norm. 

The fundamental function & of a rearrangement-invariant space X 
is defined by 

4x(t) = I! x(0,t) /Ix 0 < t < 6 

where x(~,~J is the characteristic function of the interval (0, t). 
The following proposition appears in the literature: 

PROPOSITION. 1.1 Let X be a rearrangement-invariant space, then 

$x(t) ’ 4x,(t) = t O<t<E; (1.7) 

(bx(t) is a continuous increasing function on (0, I); U.8) 

For each E > 0, dx is absolutely continnous on [E, 1). 
Moreover, there holds d$,(t)/dt < $x(t)/t, a.e. (1.9) 

X can be equivalently renormed, by 11 /lo , say, 
so that the resulting fundamental function is concave and sutis$es (1.10) 

4x(t) < 4x&t> < 24x(t) 0 < t < 1. 

Using averages, Semenov proves (1.7) in [ 131. Statement (1.8) is 
an immediate consequence of (1.7) and the definition of +x . Statement 
(1.9) is given in 1161; indeed, differentiating 4x(t) = t/4x(t), we can 
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easily get d&(t)/dt < &(t)/t a.e., since +&t) increases. Statement 
(1.10) is given in [12] and a proof appears in [16]. An elementary 
proof is given in [15]. 

We note that if X is any of the spaces L*, A,!, , Ml-,,, , Dq, or 
LP(log+L)Q, then &(t) = tl/p. 

Of fundamental importance for us are the two classes of rearrange- 
ment-invariant spaces given by 

X E % if for some 01 < 1 there is a pair of positive constants C 
and S such that (1.11) 

~xW9xW < WV) if v/u < 6. 

X E 9 if for some /3 > 0, there is a pair of positive constants C 
and S such that (1.12) 

~xbJYw4 d WRY if v/u < 6. 

PROPOSITION 1.2. x’ E 2’ if and only if X E $2. 

Proof. Suppose X’ E 9, then (1.12) holds. Let 01 = 1 - /3, then 

+4X~(V>/9X~(~> G c(v/u)E-’ if v/u < 6. 

Remark 1.3. If X is the space X with an equivalent norm, then 
x E % if and only if X E 4. 

Remark 1.4. The fundamental indices 

and 

yx = sup log M(t, X)/log t = 1j-y log M(t, X)/log t 
o<t<1 

3/x = in: log M(t, X)/log t = fiil log qt, X)/log t, 

where M(t, X> = SUP~&@)/~~( ) s , were introduced by Zippin [16]. 
We note that X E % is equivalent to yx < 1, while 0 < yx is equiv- 
alent to X E 9. The following is known about the fundamental 
indices of a rearrangement invariant space: 

Odyx<?Ix<l, (1.13) 

yx = 1 -yx,. (1.14) 

It is in the sense that yx < 1, that we say X is not “close” to L*. 
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2. C& AND WEAK (X, Y) OPERATORS 

We assume throughout this section as well as the rest of the paper 
that X has a concave fundamental function & . This is no restriction 
by (1.10); the proofs would have to be modified slightly and constants 
would have to be introduced in certain inequalities. We first define 
extremal rearrangement-invariant spaces /l(X) and M(X) (see [12]), 
and we show that weak (X, Y) operators are identical with bounded 
operators from cl(X) to M(Y) except in extreme cases of Y, i.e., 
when Y does not belong to the class %. 

We define cl(X) to be the set of all I-measurable functions f such 
that f * exists and 11 f jjnlx) = Ji f *(s) d&(s) is finite. The rearrange- 
ment-invariant space M(X) is the set of all f such that f * exists and 
]I f lIMu(x) = ~up~,,,f**(t)&(t) is finite. /l(X) and M(X) are Lorentz (1 
and M spaces, respectively, even in the case r$JO+) # 0. In [12] and 
[16] it is shown that 

A(X) c xc M(X) (2-l) 

with continuous embeddings. Indeed, considering the covariant 
decomposition of positive decreasing simple functions and the 
covariantly additive property of the norm of cl(X), we get cl(X) is 
continuously contained in X by passing to the limitf * and using (1.2). 
We give more detail in the proof of the second containment of (2.1) 
since it does not appear in the literature. We make use of Holder’s 
inequality for function spaces [lo]. Suppose f E X, then 

A linear operator T is said to be of weak type (X, Y) if T maps 
n(X) into the set of measurable functions on 1 and for some constant 
C satisfies 

(2.2) 

for each f E cl(X). The smallest constant C such that (2.2) holds is 
denoted I] T Ilw(x,r) . If we denote by &?’ the topological vector space 
of measurable functions on I with the topology of convergence in 
measure on subsets of finite measure, and if T is an operator of weak 
type (X, Y), then T is a continuous operator from n(X) to J&‘. 
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LEMMA 2.1. If Y E a, then for some constant C(Y) 

485 

(2.3) 

for t E I. 
Proof. Since +y(s) increases, 

dr,W = ,x4$,(t) G j; Wrb) ds. 

In order to prove the right-hand side of (2.3), we use (1.11) since 
Y E a. We can assume 6 < 1 and let r = t/8. Then, 

since $y(t)/$Y(r) < 1 and s/r < 6. 

THEOREM 2.2. We let Ilfjl,$cY, = supl{ f *(t)&( t)]. If Y E 9?, then 

llfllzicr, G llfllA4McY) G w>llfllkY, (2.4) 

for each f E M(Y). 

Proof. Sincef * decreases, the left-hand side of (2.4) follows from 

f*(t) = f*(t) j: ds/t < j:f*(s) dsjt = f**(t). 

On the other hand, suppose Ilfl&Yt is finite, then 

f*(S) G IlflltcY~/~Y(4. cw 

On integrating (2.5) and applying Lemma 2.1, we obtain 

f**(t) G llfllnl;cY, j; WY(4 W 
(2.6) 

G C(Y) IIfllJc(Y~/dY(O. 

Multiplying both sides of (2.6) by $y(t) and taking the supremum over 
all t we obtain 

llfllA4MtY, d w%lflll%Y, - 
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COROLLARY 2.3. If Y E %‘, then weak-type (X, Y) operators are 
equivalent to bounded operators from A(X) to M(Y). 

THEOREM 2.4. If X E 9, then X can be equivalently renormed 
such that the resulting fundamental function +x has the following pro- 
perties : 

+x is concave, (2.7) 

t d+,(t)/dt is increasing and concave, (2.8) 

there is a constant C such that (2.9) 

C-%(W < 4xWt G M>/t t EI. 

Proof. Since X E dp, then X’ E @. Applying Lemma 2.1 with 
Y = X’ and setting c?(t) = Ji &(s)/s ds, we have 

$x(t) G d(t) < c+x(t> t E I. (2.10) 

Now we set 

llfllx = maWllx~ sylf**(t)i(O% 

Using the continuous embedding (2.1) and (2.10), it is easy to see that 

llfllx G llfllx e c llfllx. 

Also, it is clear that +x(t) = d(t), t E I. 

(2.7) follows since d&t)/dt = &(t)/t decreases. Since td$(t)/dt = 
&(t), statement (2.8) follows. (2.9) is a combination of (2.7) and the 
equivalent renorming. 

THEOREM 2.5. Assume Y E @. A necessary and suficient condition 
for an operator to be of weak type (X, Y) is that T is a continuous 
operator from A(X) into the space A of measurable functions and for 
some constant C satisjies 

(2.11) 

for each measurable E C I. 

Proof. The necessity of (2.11) is obvious. To prove the sufficiency, 
suppose that f, t f *, where cfn> is a sequence of positive decreasing 
simple functions. But then f, converges to f * in n(X), so Tfn con- 
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verges to Tf * in measure on subsets of I of finite measure. This implies 
(TfJ* converges pointwise to (Tf *)*. By the properties (1.1) and (1.2) 
of a Banach function space, it suffices to prove the theorem for f a posi- 
tive decreasing simple function, say f(t) = Cyz”=, u~x(,,~,)(~), where each 
at > 0. Applying Theorem 2.2, statement (2.1 l), and the covariantly 
additive property of the norm of n(X), we obtain 

sup(V)* (t)M) < II VilM(y) < f ai II ~xh,) IIM(Y) 
t i=l 

3. SPACES A,(X) 

We introduce the spaces /l,(X) and show that they possess many of 
the properties that characterize the Lorentz Lpq spaces. We begin with 
Hardy’s inequalities (Lemmas 3.1 and 3.6), proceed to embedding and 
norm properties (Corollary 3.3 and Proposition 3.4), and then con- 
clude with duality results (Theorem 3.10 and Remark 3.11). 

We assume throughout this section that X E 9 A %!. The space 
n,(X), 0 < 01 < 1, is the set of all I-measurable functions f such 
that f * exists and 

is finite. 
The spaces .4=(X) appear in [7] where spaces called rl#,ilar are 

considered with norm 

If one replacesf ** in n,(X) byf *, which leads to an equivalent norm 
as we show below, and assumes, that &(t)lla/t decreases, then one is 
dealing with a n$,r,= space. 
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It is clear that (l%(X) is a rearrangement-invariant space for each 
X and 0 < CY < 1. Suppose that X is equivalently renormed and is 
denoted by X. By (3.1) it is easy to see that n,(X) = n,(X) with 
equivalent norms. 

From the following lemma emerge the embedding results mentioned 
above. 

LEMMA 3.1. The functional 

is equivalent to the norm of A,(X): for some constant C 

Proof. The left inequality holds since f*(t) 6 f**(t). For the 
right inequality we can first assume that there exist numbers 
0 < a < b < I such thatf * is constant on (0, a) and zero on (b, I) by 
the monotone convergence theorem. By Proposition 1.2, X’ E 5? 
since X E %!. Applying Theorem 2.4, we denote by Y the space X’ 
equivalently renormed and satisfying (2.7)-(2.9). If we let F(t) = 
Jt f*(s) ds, then 

j; [f**(t)cjx(t)]l/" f = j; [-$J t 

< const j: f&“” q 

< const j; [-fg]y$ 

i 

1 

= - const qp d[+y(t)-‘q, (3.3) 
0 

since Y satisfies (2.9). By (1.12) we have $x(O+) = 0 since X E L?. 
We apply integration by parts to the last integral in (3.3). Since 

-VV>/by(~)ll~~ IiF < [W>/9&W~ Itso+ < const[F(t>/~x,(t>ll’” LO+ 

= const[f**(t)$x(t)]ll” I = t o+ 

= const[~*(a)+~(O+)]l’a 
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we obtain 

s 
s 
1 

f const o~r(t)-l/“F(t)l~a-“f*(t) dt 

< const s If **(t)l/.-‘f *(r) +x(t)“” f 

by the inequality t * $r(t)-l < const &(t) and Holder’s inequality. 
If we can show that the first factor is finite, then we will be done since 
we can divide (3.4) by that factor and get the desired inequality. Since 
f *(&b(b) Z f**(t) &(t) when t E (a, b), then .I: V**(t) &(t)ll’u(dt/t) 
is finite. We only need to check the two tails of the integral for finiteness. 
Sincef**(t) = F(b)/t for t E (b, Z) we obtain 

j: [f**(t) &&)]l’” $ = F(b)‘/” j)5&t)+ f 

< const 
s 

:&(t)-+‘# 

< const $r(t)-ll” 1; < fco. 

Since X E 64, we denote by X the space X which is renormed 
according to Theorem 2.4. But f**(t) = f *(a) for t E (0, a), so we 
have 

s a [f**(t) $*(W” f f 
0 

const f *(u)l/& j’ +x( t)lia f 
0 

< constf*(a)lla j’ +x(t)‘@@& 
0 

< const f *(a)l’~&(t)+ 1: < +a. 

COROLLARY 3.2. For 0 < 01 < 1, we have 

A(X) c A,(X) c M(X) 

with continuous embeddings. 
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Proof. From the definitions given for the extremal spaces A and M 
and from (2.1) we see that we need to show 

&x(t) G Al,(x)(t) d const dx(l) tEI, (3.5) 

since then A(A,(X)) = A(X) and M(A,(X)) = M(X) with equiv- 
alent norms. For the left-hand inequality notice 

c+,(t) = CP 

by (1.9) and the fact &(O+) = 0. 
Now we denote by X the space X equivalently renormed with 

properties of Theorem 2.4. By Lemma 3.1 and (2.9) we obtain 

(bLl,cx,(t> = II X(o,t) IIn, G const II X(0.t) Il2,JX) 

= const +x(t) < const +x(t). 

COROLLARY 3.3 If/3 < a, then Aa(X) is continuously embedded in 
de(X). Moreooer, /la(X) is dense in A,(X). 

Proof. The last statement follows since simple functions are 
dense in A,(X), 0 < y < 1. This assertion is proved as in the case of 
Lp spaces. 

Now assume Ijfl&) = 1, then by Corollary 3.2 

f**ww) G llfllA4cx, d A * Ilflln,(x) = A. 

Since l/a < l//J 

v* *ct> dX@>/4”B d Lf **w 9xw/4”“, 

so 

1 Blu llflln~cx, < A - s/a 1 i3lrr Ilflln,cx, = A - . 
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PROPOSITION 3.4. Suppose 0 < 01 < /3 < y < 1, then for each 
f E A,(X) we have 

Proof. This result follows from Corollary 3.3 and the logarith- 
mically convex property of the norm of IP spaces. 

Remark 3.5. After a few preparatory lemmas we will be in a 
position to prove our duality result. The proof given here is very 
similar to that given by Oaklander [ll] for Lpq spaces. 

LEMMA 3.6. Suppose h is a positive measurable function on I and 
satisfies Ji [h(s)&(s)]‘/= ds/s < 1. Iff(t) = Jl h(s) ds/s, then Ilflln,(x) < A, 
where A is independent of h. 

Proof. First note that f is a positive decreasing function on I. 
By the monotone-convergence theorem we can assume there exist 
0 < a < b < I such that h is zero on (0, a) and (b, I). Again we 
denote by X the space X equivalently renormed by Theorem 2.4. 
Applying Lemma 3.1 and statement (2.9), we obtain 

llfll>~x) d const i 1 [f*(s)&(s)ll/a + d const J”” kfWhdSWmd~ 
0 

I 
1 

= const of(s)“” 4M41’“l* 

Since f is zero on (b, I), integrating by parts, we get 

llfllY&) < cona (- j: M>l~“fw~a-l W)l)* 

But, df(s)/ds = -h(s)/s, so substituting and applying Holder’s 
inequality we have 

But Ilflln,cx, G Ilf(4 x(o,dtIl~,w G constf(4 +x(b) < + 03, so 

llfllA,~~~ G const = A. 
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LEMMA 3.7. For each measurable function g on I and 0 < 01 < 1 

/I g lIn,m = ;:I j' f *Wg*(t) 4 
a 0 

(3.6) 

where 01’ = 1 - 01 and A, = {f /f(t) = Jf h(s) ds/s, where h 3 0 and 
j’: [h(s) &(s)]~/~ dsjs = l}. 

Proof. Suppose f E A, , then using Fubini and H6lder’s inequality 

s 

1 
of(t)g*(t) dt = jig*(t) j: h(s) $ dt = j; ii;,*(t) dtj h(s) f 

= I :gcl(s) 4s) ds = j:, k**(s) MN&) M>l f 

< 1s z 
0 

[g**(s) f$x,(s)]ll"* $f' 1,: [h(s)&(s)]l'~ $1" 
= II g /IA&‘)~ 

On the other hand, take M to be any number satisfying 
0 < M < 11 g Ijn,,(X,) . By the monotone-convergence theorem there 
exist numbers a, b between 0 and 1 such that 

) Jb [g**(s) c&(s)]'l*' +I=' > M. 
a 

We shall exhibit an h > 0 with the following properties: 

(i) f(t) = J: h(s) ds/s belongs to A, ; 

(ii) Jif *(t)g*(t) dt > M. 

Define 

44 = k**(s) 5b+Yw’~‘-1 w-1 Xhd4 
where 

Since 

p = 1,: [g**(s) +x+)]“*’ $lE’. 

jz [h(s) (bx(s)]l,m f = s” [ g**(~~+x+~ ]- 8 
0 a 

zz= 
!J 

1 [g**(s) r#‘&)]l~~' "I /3-l'"' = 1, 

(3.7) 

we have that (i) is true. 
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Assertion (ii) is valid since 

I)*(t)g*(t) dt = llg**(t) h(t) dt = p/a J” g**(tp #y(t)l/“’ f Q 

by (3.7). 

= ,131-W ,&I” = fj > M 

We need the following well-known result from the literature 
[lo; Chapter I, Section 2, Theorem 31 and [5, p. 721; 

PROPOSITION 3.8. Suppose 2 is a Banach function space. A necessary 
and su#icient condition that 

z* = 2’ 

is that 11 fXE jlz converges to zero as mE goes to zero for each f in 2. 

COROLLARY 3.9. If 0 < a < 1, then 

n&Y>* = A,(X)‘. 

Proof. By Lemma (3.1), we have 

llfx~ IIA,w d cons II AXE Ill;,(~) G const 

But the last expression converges to 0 with mE by the dominated 
convergence theorem, so apply Proposition (3.8) to get the result. 

THEOREM 3.10. If 0 < (Y < 1, then, with equivalent norms, 

A,(x)* = A,(X) = A,+q, 

where 01’ = 1 - CL In particular, A,(X) is reflexive for 0 < 01 < 1. 

Proof. In view of Corollary 3.9, we need only show Au(X) = 
cl,(X). Supposeg E 4,(X’) and 11 f Iln,(x) < 1, then 

/;f*ct) s*(t) dt G /:f**(tk**W dt = 1; [f**(t>~x(t)l[g**(t)~x,(t)l f . 

Applying Holder’s inequality, we obtain 

s)*(t) g*(t) dt < 1 s: [f**(t) CxW” $Ia ] j: k**(t) MW’” 91%’ 

G II g Iln,.tx’) 
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Hence by the definition of the dual space, 

I! g lln,w G l/g Iln,.w . 

On the other hand, suppose g E (l=(X)‘. For the norm /I g lln,,(x,) , 
we have the formula (3.6). But by Lemma 3.6, if f E A,, then 
If IIn, < A. Therefore 

Remark 3.11. We sum up a few additional properties of the spaces 
/la(X). For a fixed function f, 11 f IJn,tx) is a continuous function of a. 
This follows from Proposition 3.4. If a tends to zero, then the norm of 
/I=(X) tends to the norm of M(X) (same as 11 /IL’ + 1) ]lLrn as p -+ co); 
since the simples are dense in /l,(X) the “limit” of the spaces (la(X) as 
a + 0 is the space MO(X), the norm closure of L1 fiL” in M(X). By using 
Lemma 3.1 and Theorem 2.4 it is easy to show that n,(X) = n(X). 
Analogous to Theorem 3.10 is the previously known duality result 

n(x)* = A(X)’ = M(X’) 

which is a special case of a theorem given in Lorentz [6, p. 73, Theorem 
3.721 for (l+,l,a . Also by Theorem 3 in Chapter 1, Section 2 of [lo] 
we have 

MO(X)* = A(X). 

4. CALDER~N'S THEOREM 

We begin by stating a theorem due to Calderon [3]. Our aim is to 
extend this theorem to a function-space setting without the restric- 
tions of Zippin which were outlined in Section 1. This is our 
Theorem 4.7. 

Let u be the closed line segment in the unit square connecting the 
points (a1 , h) and (a2 , j3a), where a1 # as and /3i # /?, . Define the 
operator S(a) acting on f pointwise by 

where 

We can now state the theorem of Calderon: 



SPACES /In(x) AND INTERPOLATION 495 

THEOREM A (See [3, Theorem lo]). In order that each operator 
mapping A,* boundedly into M1+ , i = 1, 2, should have a unique 
extension to a bounded operator from X to Y, it is necessary and su#icient 
that S(a) should map X to Y. 

We assume that all spaces are renormed to possess concave funda- 
mental functions, and we let (J = [(X1 , Y,), (X2 , Yz)]. Instead of the 
condition 01~ # 01~ , we assume the weaker condition 

!&+xp+) = 0 (4.1) 

holds. This gives us a minimal separation of the first coordinate of the 
interpolation segment o; indeed, if I < co, then at least one of the 
spaces Ll(X,) is not equal to L”. 

We now define Calder6n’s operator S(o) for the general situation 
(see [16]). Define 

For fixed t, YI is a continuous increasing concave function of s (the 
minimum of two concave functions is concave). By (4.1) we have 
lin-bo Y(s, t) = 0. Hence the function 

qs, t) = dY(s, t)/ds (4.3) 

is a positive decreasing function on I and 

s 
’ O(s, t) ds = Y(r, t). 
0 

(4.4) 

The operator S(a) is defined for each f pointwise by 

S(WlW = j-” f(s) @h t) ds 
0 

(4.5) 

if the integral is absolutely convergent for almost all t. The following 
two lemmas are available in the literature (see [l, 31, and [16]). 

LEMMA 4.1. Suppose f E A(X,) + A(X,), then 

S(o)[f *] is a positive decreasing function which is finite valued on 1, (4.6) 

S(o)[f] is defined, (4.7) 

(S(4Vl)* W G S(W*l(~), all t. (4.8) 
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LEMMA 4.2. The operator S(a) is of weak types (Xi , Y,), for 
i = 1, 2, where u = [(X, , Yl), (X2, Y,)]. In fact, for i = 1, 2, 
II Wlw(X,,Y,) = 1. 

The decomposition result which follows is crucial for the proof of 
our generalization of Calderon’s theorem. 

LEMMA 4.3. Let 9 denote the set of all positive decreasing functions 
on I. If f E 9 then for each t there exist functions fi and fi in 9 such that 

fi + f2 = f and 

(4.9) 

Proof. Assume t is fixed. Let E be the subset of I such that s E E 
implies 

+x,(wY,(t) < 4XBWY,W (4.10) 

There exists a countable disjoint union of open intervals Ij = (ai , bj) 
such that Uj”=, Ii = E. Note that we have equality in (4.10) if s = aj 
or bj . 

We now since f into horizontal pieces as follows: Let gj(s) = 
[min(f(s), f (ai)) - f (b,)], . The functions gi E B and satisfy 

= (j;gj(4 d+x,(s))/4yl(f) = II gi Ilncx,)/du,(t>~ 

Now let fi = CT=, g, , then fi E 9 and 

j: fi(s) @(s, t) ds = c jz g&) @(s, t> ds = c II & Iln(x,d~~,(t) 

j 0 j 

= llh Ilncx,)/~Y~(t>7 

since the norm of a (1 space is covariantly additive. 
For the function fi consider f - fi . Since fi = liq,, (f - cy=l gj), 

we see that fi E 9 and is constant on each Ii . Let E’ = I\ E and 
notice that @(s, t) = (d&(s)/ds)/+,2(t) almost everywhere on E’. The 
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exceptional set is the set of isolated points of E’ or where d~#~~(s)/ds or 
dY(s, t)/ds does not exist. So, 

But fa is constant on each Ij , so by equality in (4.10) 

COROLLARY 4.4 If f or some t, E I, JAf *(s) @(s, to) ds < + CO, 
then f E fl(X,) + A(X,). 

Proof. We can assume that f is a positive decreasing function since 

4-Q + 4x21 is a rearrangement-invariant space. Applying Lemma 
4.3, we can find functions fi , fi E 9 such that fi + fi = f and (4.9) 
holds. Hence 

c llfllA(x,,+n(x,, = c ,,$f=frll g1 IIn + II g2 I/A(X*,> 2 

d llfl llncx,,/dY,(44 + llfi llA(X2~/~Y*(4J 

= j)M W, to) ds + j)&, @P(s, to) ds 

= 
s 

)(s) @(s, to) ds < +a, 

where c = min,,,,, {~$~.(t&l). I 

THEOREM 4.5. Suppose T is an operator of weak types (Xi, Y,), 
i = 1,2, then for each f E A(X,) + A(X,), 

(Tf)* (t) < 2 . @II”‘: II Tllw(xi.~id W[f*IW (4.11) 

Proof. Suppose t E I. By Lemma 4.3 there exist positive decreasing 
functions fi and fi such that fi + f2 = f * and (4.9) holds. Under the 
measure-preserving map f * --+ f(see [3, Lemma 2), we obtain functions 
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g, , g, such that gi* = fi and g, + g, = f, a.e. Since T is of weak 
types (Xi , Y,), we have 

PM* (t/2) < II TllW(Xi,Y,) II gi lIA(Xi)l~YiW 

= II m!l(x,,Y,) llfi llAcx,,/9Y,w. 

But&i is concave, so &Jt) < 2&Jt/2), and 

C&i)* ($9 < 2 - II T lIw(x,,~~) * llfi ll~cx,,/+~~(O 

= 2 II Tllw(xi,ri) * ~(4LhlW. 

We have the following inequality from [3, p. 290, line 7-I: 

V.f)* (0 d (%I* W9 + Kg,)* ($9 
so 

(TO* (t) G 97 II T llwcx,,r,,)(~(a)E~l(t) + %4[filW> 

= 34; II T llw(x,,ri)) S(4V*lW 
Remark 4.6. Property (4.11) g ives justification for the use of the 

terminology “maximal weak-type (Xi , YJ operator” in referring to 
the operator S(o). 

THEOREM 4.7. A necessary and suficient condition for (X, Y) to be 
weak intermediate for (T is that for each f E X, S(a)lf] should exist, and 

wr.0 E y* 
Proof. The necessity of the condition is obvious since S(a) is a 

weak-type (Xi , Yi) operator and hence must map X to Y. 
On the other hand, let us show that the condition is sufficient. 

Since S(u) f E Y, S(a) f must be finite almost everywhere. By Corollary 
4.4,f E &G) + W&J. H ence X C rl(X,) + cl(X,); this embedding 
is continuous by the closed-graph theorem. This shows that X is 
contained in the domain of any weak-type (Xi , YJ operator, i = 1,2, 
so the extension of operators is trivial. We need to show that S(a) is 
a bounded map from X to Y. Again we employ the closed-graph 
theorem. Suppose fn --+ f in X and S(a)[ f,] -+ g in Y, then f, -+ f in 
n(X,) + /1(X,) by the continuous embedding. Since S(a) is of weak 
types (Xi , Y,), i = 1, 2, we have that &‘(a)[ f,] -+ S(a)[f] in measure 
on subsets of I of finite measure. Since Y is a rearrangement-invariant 
space WC f,l - g in measure on sets of finite measure. Hence 

g = Rd[f I- 
We now apply Theorem 4.5. 
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Remark 4.8. In [3] and [16] no attempt was made to find the best 
constant C such that 

where maxi=1,2 11 2’ I)w(,r,r,) < 1, andf E X. Theorem 4.5 and Lemma 
4.2 do not give us the best constant C, but they do yield 

In the classical case u = [(LPI, P), (P, P)] we get that 

where l/p = e/p, + (1 - e)/p, and l/q = e/p, + (1 - e>/qp . 
We now interpret Theorem 4.7 into the language of strong inter- 

polation theorems. 

THEOREM 4.9. Suppose iV$i E &!, i = 1, 2, and let o = 
[(Ad, , Mfil), (&,MG,)]. The pazr (X, Y) is trong intermediate for u if 
and only if for each f E X, S(a) f exists and belongs to Y. 

5. INTERPOLATION THEOREMS 

We assume X, , X, , Y1 , Yz , X, and Y have been equivalently 
renormed to possess concave fundamental functions and that (4.1) 
holds. 

We give necessary and sufficient conditions in terms of the function 

% t> = WY t) * dY(WM) s,tEI P-1) 

for special spaces, say A, M, and AJX), to be weak intermediate for 
an interpolation segment u. Computation involving the function F 
also yields a sufficient condition for (X, Y) to be strong intermediate 
for o and a necessary condition in order that (X, Y) be weak inter- 
mediate for u. These results depend heavily upon the results obtained 
in Section 4. 

THEOREM 5.1. A necessary and suficient condition that (A(X), A(Y)) 
be weak intermediate for u is 

s 
’ F(s, t) s < A SEI. 
0 

(5.2) 
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Proof. The condition is shown to be necessary by considering 
simple functions of the form fs(t) = x(,&t). We assume that (A(X), 
A(Y)) is weak intermediate for cr. Then by Lemma 4.2. 

But by (4.4) 

so 

I z I+, t) Jgf = 
0 

[j z Y(s, t) d+ y(t)] i&(s) = 
0 

‘I s(;x~;‘A’y) 

On the other hand, assume (5.2) holds and let h be a positive 
decreasing simple function, say 

h(t) = i aiX(0.8i)(t), 
i=l 

where si E I and ai 3 0. By the covariantly additive property of the 
norm in A(X) we obtain 

I! SC@ II/l(Y) G c ai II S(u) X(o,sJ IllI 

< A ; ai+x(si) = A F j; aix(o,s,)(t) #x(t) 

= A II h !In(x) . 

Now letf E A(X) and let {h,} b e a monotone increasing sequence of 
positive decreasing simple functions converging to f *. By the mono- 
tone-convergence theorem S(o)[h,](t) converges up to S’(u)v*](t). 
By Lemma 4.1 and the definition of rearrangement-invariant spaces we 
have 

II S(U)fIlA(Y) < II S(~>[f*lllncY, < ;z I/ S(4P,1llA(Y, 

< A ;+$ II 4 lhx) G A llflhx) - 

We finish by applying Theorem 4.7. 
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THEOREM 5.2. Assume X and Y E 9. A necessary and suficient 
condition that (M(X), M(Y)) is weak intermediate for u is 

1 ’ F(s, 4 &x(4 < A 
-&a-’ 

t E I. 
0 

Proof. First we make the following observation 

I ’ F(s, t) # = S(4[gl(t) * 4YWY 
0 

(5.3) 

(5.4) 

where g(s) = l/&(s). To show this, let a, , b, E I such that a, 4 0 
and b, t 1. If we define 

then 
g,(s) = minCg(aJ, g(s) x(~,b,W 

= -$r(t) j: w, t) 4&(41 = dr(t) wkdt> 

using integration by parts since Y(0 +, t) = 0. Now we use the mono- 
tone-convergence theorem to get (5.4) since g, t g. 

Since X E 9?/, by Theorem 2.2 we get 

syp{f *w $x(t)> G II f IIMW G C(X) sqPlf*w b(t)l* 

A similar statement holds for Y. Hence if IlfllM(x) < 1, then 
f*(t) < g(t) and 

II ~(4fllMY) G II S(df* IIM(Y) G II S(dg /h(Y) 

G C(Y) suP{~(4M(t)~Y(t>> G C(Y) - A 

by (5.4) and (5.3). 
Condition (5.3) is necessary since 11 g JIM(r) < C(X) and so 

s 
’ F(s, t) # = ~(4kl(t) * Cr(t) G II wklllMM(Y) 
0 

< II S(4l II g Ilwcx) < W> II W = A. 

Remark 5.3. Theorems 5.1 and 5.2 give interpolation theorems 
with Lorentz A, and M+ spaces since A, = cl(n,) and Mb = M(M,). 
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For the remainder of this section we require that all spaces belong 
to 9 n %. In this case we have that 

.r 2 F(s, t) dt <A SEI 
0 t 

and 

s 

1 F(s, t) ds 
<A tEI 

0 s 

are equivalent to conditions (5.2) and (5.3), respectively, by Theorem 
2.4. 

DEFINITION 5.4. We define the u-finite measure p on 1 by 

CL(E) = j,f, 

where E is any Lebesgue measurable subset of 1. If g is a measurable 
function on I such that ~{s j / g(s)] > C} < + co for each positive E, 
then we denote by g@ the unique right-continuous positive decreasing 
function defined on I which is equimeasurable with g in the sense that 

4s I g@(s) > 4 = PL(S I I &)I > 4 

for each positive E. For each a > 0, it is clear that there exists a 
measurable subset E, of I such that p(E,) = a, 

j;g@(s) ds = 1 1 g(ss)i ds , (5.7) 
El2 

and 

1 g(s)\ < g@(u) s EI \ E, a.e. (54 

Properties (1.1) and (1.2), 1 g a on with two minor properties, can be 
used to define Banach function spaces over the measure space (I, CL) 
Property (1.4) is, in fact, proved in [lo] for Banach function spaces over 
arbitrary u-finite measure spaces. Using (1.4), we can easily see that 

’ f(s) g(s) ds 
‘lf”m = ,,s,,~,~~<l I so s I = ,,g I/=, cr,dl Syf@(s)g@(s) ds SUP (5.9) 

holds for all rearrangement-invariant spaces Z(p) over (1, p). As in the 
case for (I, m) we have 

if ho < f @, then II h IL-(rr) < llf llm (5.10) 
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by property (5.9). A rearrangement invariant space over (I, /-L) of 
special interest is the space D(p) used in the discussion below. For 
the details of this summary, see Butzer-Berens [2]. 

LEMMA 5.5. Assume conditions (5.5) and (5.6) are satis$ed, then 
if(f*&)Q exists, (S(a)lf*] &)@ exists and 

w>Lf*1 $YP -=c 4f*$w- (5.11) 

Proof. We define an operator T for positive functions f as follows 

Since qxi(s)/ds < &,(s)/s a.e., we have 

w [i] w+Y(t) = h(t) ,: ,-& % t) ds 

< Cr(t> 1: ,-- f W, t) ds 

= Tf(t). 

If we can show 

(TfP < Af @ 

for each function f, in particular for f *& , then 

(5.12) 

(W[f *I +d@ G (Tlf *MP -=c 4f *MC 

and we will be done. 
By (5.7) we can find sets Er and E, for a given a > 0 such that 

p(E,) = a and 

s I Tf(t)l dt 
El t 

= :(Tf)@(t)dt, 
s 

j- 
E!2 

‘f(sS)‘ds = j;f@(s)ds. 

Now let g(s) = JE F(s, t) dt/t, s E I. By (5.5) we have supIEI g(s) < A, 
while (5.6) implies’J:g(s) dr/s < aA. Hence 

J;(Tf)@(t)dt = ,- 
El 

1 Tf(tt)ldt < s,$s: ‘6, t, ‘f(‘)i ds 

s 
’ = If(s)1 ds % t> dt = 
0 S s El t s 

’ IfWlsgW c5.13J 
0 

by the theorem of Fubini. 

580/x1/4-8 
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By (5.8) we also have 

s 
’ i f(s)1 g(s) ds = 

SHARPLEY 

- < 1 
I f(s)1 g(s) ds 

4 S 
+ f "(a) j,,, q 

=s 

[I f(s) I - f @k41 g(s) ds 
E2 S 

+f@(u) j:“““’ 

<A J‘ EZ 
[I f(s)1 -sf ‘WI ds + Aaf +> 

Z A 
J’ 

I f(s)l ds = 
EZ S 

A j-“f@(s) ds. 
0 

Combining this with inequality (5.13) we obtain the desired result. 

THEOREM 5.6. We let A,(X) = M(X), then for each 0 < 01 < 1 
~4V>~ A( Y)) is weak intermediate for CT if conditions (5.5) and (5.6) 
are satisfied. Moreover, (5.5) holds ;f (Al(X), Al(Y)) is weak inter- 
mediate for u, while (A,(X), A,,(Y)) b can ’ g weak intermediate for CT implies 
(5.6) is true. 

Proof. The second part of the theorem follows from Theorems 
5.1 and 5.2 and Remark 5.3. Theorems 5.1 and 5.2 also imply the first 
part of the theorem is true for (n,(X), (1r( Y)) and (J&,(X), (1,(Y)). 

Now suppose 0 < 01 < 1 and let p = l/cl. Consider the rearrange- 
ment-invariant space (with respect to I-L on I) 2 = D(P). Since (5.11) 
holds, then (5.16) implies - ’ .. ’ 

II S(~~*I+Y Ilpfuj G A lIf*#x IlptGj . 

But (4.8) and (3.2) imply 

II S(MlA,(Y) < II q4.f* L,(Y) f c II S(a)f* IIZJY) 

= c II s(4Lf*l4Y llLqu) . 

Again employing (3.2), we have 

llf*~XllL~(u) = Ilfllll$,,, < IlfllA~~x,~ 

Combining inequalities (5.15), (5.14), and (5.16), we obtain 

II S(4flln,c~, G AC lIfll~,cx, . 

We are done by Theorem 4.7. 

(5.14) 

(5.15) 

(5.16) 
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THEOREM 5.7. The condition 

qs, t) < 4 s, tEI (5.17) 

is necessary in order that (X, Y) be weak intermediate for u. 

Proof. Suppose (X, Y) is weak intermediate for cr, then S(o) maps 
X boundedly into Y. But (2.1) gives that S(o) is a bounded map from 
/l(X) into M(Y). H ence if f, = x(,,~) we have 

m t> MS) G S(4fs(t>ddt) G II S(u)fs IlAm 

< A llfs Ilnw = 4x(s) 

for each s, t E I. We then have 

F(s, t) < A. 

Remark 5.8. The proof above indicates that (5.17) is necessary 
and sufficient for each operator of weak types (Xi , YJ, i = 1,2, to be 
an operator of weak-type (X, Y) ( covariant additivity of the norm of 
4-w 

Note that the proof, using (2.1), makes use of the fact that each 
strong operator mapping X into Y is of weak type (X, Y). 

THEOREM 5.9. 

2 1 

IS 0 0 
F(s, t) 4 f < A (5.18) 

is suficient for (X, Y) to be weak (and hence strong) intermediate for (T. 

Proof. As noted in Remark 5.8 each operator T which maps Xi 
boundedly to Yi is also a weak (Xi, YJ operator. If (X, Y) can be 
shown to be weak intermediate for (T, then T will map X boundedly 
to Y. Hence (X, Y) is strong intermediate for u. 

If we show that (5.18) implies S(u) maps M(X) boundedly into fl( Y), 
then by the embedding (2.1) we have that S(u) maps X boundedly 
into Y. We proceed as in Theorem 5.2. Let g(s) = l/&(s). Suppose 
c EL:’ and Ilf II M(X) < 1, then f*(t) d l/&(t) = g(t). BY (5.4) 

cwf>* w G %4[f*I(t) G S(fJ)[gl(t) 
1 2 =- 

s M) 0 
F(s, t) m . 

MS) 
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so 

L 
e ss z F(s, t) ds dt < A 

0 0 s t ’ 

for each Ilfllw(x) d 1. 
From the preceding proof it is easy to see that condition (5.18) is 

also necessary in order that (M(X), A(Y)) be weak intermediate for 0. 

Remark 5.10. In [l] Boyd gives a necessary and sufficient con- 
dition for (X, X) to be weak intermediate for (T = [(LPI, LPI), (LPz, Lpz)]. 
The condition is 

l/P2 < -ax d ax < l/P, 9 

where ~7 and 6x are the lower and upper indices of X calculated from 
the norm of the compression operator on the space X. 

Zippin proves in [16] that if L” is dense in all spaces under consi- 
deration, then the condition 

3/x, -c yx G 3/x -=c yx, 

is sufficient for (X, X) to be weak intermediate for 

(5.19) 

u = GG Y -u (X* 9 %!)1~ 

where the indices y are discussed in Remark 1.4. It is not difficult to 
see that (5.19) implies both (5.2) and (5.3). On the other hand 
Shimogaki [14] gives an example of a rearrangement-invariant space X 
which satisfies 

but (X, X) is not weak intermediate for 0 = [(VI, LQ), (Lp2, Lp2)]. 
Hence even though (5.2) and (5.3) are sufficient to give many pairs 
(see Lemma 5.5) as weak intermediate, they do not give them all. 
If in our theorems we let Xi = Yi and X = Y, then our results are 
not comparable with those of Zippin [16]. 

6. COMPARISON TO OTHER INTERPOLATION METHODS 

We compare the methods of Calderon with those of Lorentz- 
Shimogaki and Peetre for the interpolation segment 

5 = rm-G)~ M*(yl)), P&G), Jf*(Ydl. 
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In both cases the methods are shown to be equivalent up to constants. 
For a rearrangement-invariant space X we show that {A,(X)},+~, 

forms a scale in the sense of [5]. We then compare the theorems 
following from this fact to those obtained in Section 5. 

We define M*(Y) = (g I II g II,wY) = supl g*(t) #v(t) < + ~0). 
Notice that M(Y) is continuously embedded in M*(Y) since g*(t) < 
g**(t), but M*(Y) is not a Banach space since I/ . IIMM*o) is not sub- 
additive. M*(Y), however, is a complete quasilinear rearrangement- 
invariant function space satisfying properties (1.1) and (1.2). In most 
cases, i.e., Y E %‘, M*(Y) = M(Y) with equivalent norms by 
Theorem 2.2. The space M*(Y) has the property that bounded 
operators from A(X) to M*(Y) are equivalent to weak-type (X, Y) 
operators. 

DEFINITION 6.1. (see [8]). Suppose u is an interpolation segment 
such that (4.1) holds, then we define the quasiorder f with respect 
to u by 

ifgEY1+ Yz andfEX,+X,, thengffmeans the 
following: Given any decomposition off, say fi + fi = f, 
where fi E Xi , there is a decomposition of g, say g, + g, = g, 
where 

gi E yi and I/ gi llYi G llfi llXi 9 i= 1,2. 

We define 99’(u) to be the class of all pairs (X, Y) which satisfy 
the condition: There is a constant C such that 

gffwithrespecttoaimpliesjjg/ly< C/ifilx. 

The elementary proof of the following result also works for the 
spaces M*, so we extend the definition of f to quasilinear spaces. 

PROPOSITION 6.2. (see Theorem 3 of [S]). If (X, Y) E 99(a), 
then (X, Y) is strong intermediate for u. 

We still need a further result from the work of Lorentz and 
Shimogaki: 

PROPOSITION 6.3. (see Proposition 2 of [S]). Let f be a positive 
decreasing function on (0, I) and let f = fi + fi , where fi > 0, i = 
1, 2. Then there exist positive decreasing functions fi’ with the properties 
fi’<fi,i=1,2,andf,‘+f,‘=f. 
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LEMMA 6.4. Suppose 0 = [(A(X,), AI*(Y (A(X,), M*(Y,))], 
then we have 

(i) g f f with respect to o implies g*(t) < 2 S(a)[f*](t), t ~1. 

(ii) g*(t) < S(u)[f*](t), t E I implies g f f. 

Proof. To prove (i), suppose g f f. By Lemma 4.3 there exist 
positive decreasing functions fr and fi such that fi + fi = f * and 
(4.9) holds. S’ mce g f f there exist functions g, and g, such that 
gl + g2 = g, and 

s"Pg*wJYzw G llfi Illlcx,, i= 1,2. (6.1) 
s 

But, 4ri is concave, so qbYi(t)/2 < &Jt/2). By the inequality of 
Calderon, property (6.1), and (4.9) we obtain 

g*(t) G g,*w + L?,*w G w, IlA(x,,/~Y,(t> + IIf2 llAcx,,/~Y,(t>> 

= w(4Klw + S(mil(tN = wm*l(Q 

For the proof of statement (ii) we first notice that g f f is equivalent 
to g f f * since the spaces are rearrangement invariant. Suppose 
f* = fi + f2 , then we can assume that 0 < fi <f* since A(X,) 
possesses property (1.1). By Proposition 6.3 we can find positive 
decreasing functions fi’ such that fi’ + f2’ = f * and fi’ < fi , so 

lifi’ Ll(X,) G llfi IlLI . (6.2) 

Since g*(t) < S(a)[fi’](t) + S(a)[f2’](t) and each of the functions 

S(o)[ fi’l P t is osi ive and decreasing there are two positive decreasing 
functions g, and g, such that g, + g, = g* and gi(t) < S(a)[ fi’](t). 
But S(u) is an operator of weak types (Xi , YJ, so 

gittWY,tt) < S(“)Lfi’l(t) +YiCt> G II fi IlAtXJ * 

Taking the supremum over t and observing (6.2), we get statement (ii). 

THEOREM 6.5. Let G be as above. The pair (X, Y) is strong inter- 
mediate for 6 if and only z.. (X, Y) belongs to the class 99’(e). 

Proof. The sufficiency follows from Proposition 6.2. For the 
necessity, suppose (X, Y) is strong intermediate for c?. Then (X, Y) 
is weak intermediate for u = [(X, , YI), (X2 , Y2)]. By Lemma 
4.2, S(a) is a bounded operator from X to Y. Suppose g f f with 
respect to 6, then by Lemma 6.4 

g*(t) G 2%J)[f*l(t>* 
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But this gives 

llg IIY d 2 II S(4f” l/Y d 2 II 8411 llfllx 

and so (X, Y) E Z~(G). 
Again, we let 

0 = FG 9 Yl)> (X2 3 YFJI and 0 = [(4X1), M*(YA), VVi), M*U’A)l. 

We now state an interpolation method of Peetre and compare it with 
our results in Section 4. 

DEFINITION 6.6. For a pair of Banach function spaces X, , X2 
and a t > 0, define the K function norm on XI + X2 by 

mf; Xl > X2) = f y,rllh I/x1 + t llfi 11x,>. 1 2 

We denote by P’(U) the class of all pairs of Banach function spaces 
(X, Y) such that the following condition is satisfied: 

For some constant C, K(t, g; YI , YJ < K(t,fi XI , X2) all t implies 
Ilgll, < cllfllx~ 

PROPOSITION 6.7. If (X, Y) E 9(a), then (X, Y) is strong inter- 
mediate for u. 

This follows immediately from the elementary fact that 

This is true even if the Yi are quasilinear. 
The following lemma was essentially stated without proof in the 

introduction of [8]. 

LEMMA 6.8. Suppose (4.1) holds, then 

W, f; 4x,>, 4-Q) = S:f*@) d min(5bJ4, th&))- 

Proof. Since rl(X,) and cl(X,) are rearrangement invariant, we 
have K(t,f *) = K(t,f), so we may assume f is positive and decreasing. 
We prove that 

W,f) = f $f=fcllfI IIdXJ + t llh ll4xJ (6.3) 1 2 f,: >O,J 
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Since A(Xi) satisfy (1. I) it is certainly clear that we can assumefi > 0. 
Using Proposition 6.3, we can select for each decomposition off, say 

f = fi + f2 9 two positive decreasing functions fi’, fir such that 
fi’ + f2’ = f and fi’ f fi . This gives that 

llfi’ IlA(X,) < llfi IlLI > i= 1,2, 

and (6.3) follows. 
So, now let f = fi + fi , where fi is positive and decreasing. Let 

8 be the interpolation segment [(X1 , Ll), (X, , L”)]. Note that 
$Ll(t) = t, while $Lm(t) = 1, if t > 0. In this case 

t ’ fw[m> = /)w mwb,w, %,W* 

Since S(6) is of weak types (Xi , L1) and (X, , L”), we have 

and 

ww21(~> G llfi IILl * 
But 

I 

2 
oft4d min(b&), %,(4> = QWfl(O = ~W9LAlW + W)[filW 

G llh lIA(XJ + t llfi IIn * 

Taking the infinum over all such decompositions, we get 

s 

1 
, f(W mi4#9,(4, @x,W) 6 Ktt, f; 4-U 4X2)). 

For the reverse inequality we use Lemma 4.3 to get a decompo- 
sition off, say fi + f2 = f, where fi . p is OSI ive, decreasing and satisfies ‘t’ 

wwx~> = llh ILCX,, P2 i= 1,2. 

Hence 

w,f; 4-a 4X2)> G llfi lIA(XJ + t llf2 IlA(X,) 

= cvwll(t> + wxxlw> = Qwv1w 

= s ~f(W minUxlW, th,W 

Property (6.5) b 1 e ow p rovides insight to the selection of the operator 
S(a) as the choice for a maximal weak-type (Xi , Yi) operator. 
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THEOREM 6.9. Let 5 be as above. The pair (X, Y) is strong inter- 
mediate for 0 if and only if (X, Y) belongs to the class 9(G). 

Proof. The sufficiency is Proposition 6.7. To prove the necessity, 
notice that (X, Y) being strong intermediate for (5 is equivalent 
to (X, Y) being weak intermediate for u = [(X, , YJ, (X2, Y,)]. 
Now suppose 

w, g; M*( YJ, M*( Yd) < WY f; 4X,), 4X,>), all t. (6.4) 

For some constant C, we need 11 g IJy < C jlfjlx . But #ri is concave, so 

W) * h-$(t) d 4&P)- H ence by the inequality of Calderbn, (6.4), 
and Lemma 6.8 we have 

= 2~(fJ>Lfl(t)- (6.5) 

But S(o) is a bounded operator from X to Y, so 

II g IIY G 2 II S(a)ll llfllx - 

Now we outline the definition and a few of the properties of the 
theory of scales of Banach spaces [5]. A family of Banach spaces 
Xa(O ,< 01 < 1) with norms IlfllG(f E XJ is called a scale if 

X, is densely embedded in X, when /? > 01 and \jf\j, < C(CZ, p) jjfl[s. (6.6) 

if 0 < 01 < fl < y < 1 there is a finite constant C(o1, j?, y) such that 

llflls < q% is, 7) llflP)‘(‘-“) IIfll?-a)‘(y-ar) for all fE Xy . (6.7) 

By Corollary 3.3 and Proposition 3.4 it is not hard to see that 
kL(wo~cx~l forms a scale, where 11,(X) is set equal to MO(X). 
In fact, for this scale 

2% lb% = Ilfll, * ((39 
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Hence the scale {A4X>)o~mGl is continuous in the terminology of [5]. 
This scale can also be equivalently renormed so that C(ol, 8, y) < 1 
and C(a, /3) < ee. By Theorem 3.10 and Remark 3.11 we can see that 
the dual family {fl,(X)*-}OGaG1 forms a scale where (la(X)*- is the 
closure of L1 n L” in (la(X)*. Hence the scale {fl,(X)},,.,,.,r forms 
what is called a regular scale. 

We define the rearrangement-invariant space F,(X) as the closure 
of the set of all f such that 

llfllF,cx, = SUP QfO QEAW’) 

in the I/ lIF,cx, norm topology in MO(X). This construction is called the 
“minimal scale” in [5]. Theorem (4.2) of [5] gives that /IQ(X) is 
continuously embedded in F,(X) for each 01. Also we have the 
following: 

PROPOSITION 6.10 (see Theorem (4.1) of [5]). Each operator 
which maps A(X) b oundedly to A(Y) and MO(X) boundedly to MO(Y), 
is also a bounded map from A,(X) to F,(X). 

Theorem (8.8) of [5] gives that F,(X) is continuously embedded in 
d,(X) for 0 < 01 < /3 < 1. This together with Proposition 6.10 
gives 

PROPOSITION 6.11 (see Theorem (8.9) of [5]). Each operator which 
maps A(X) boundedly to A(Y) and MO(X) boundedly to MO(Y) is also 
a bounded map from A,(X) to A,(Y), where 01 < j3. 

THEOREM 6.12 (cf. Theorem 5.6) Suppose (5.5), (5.6), and 

h&F@, t) = 0 SEI (6.9) 

hold, then (A&X), A,(Y)) is weak intermediate for CT for each 
o<ol</3<1. 

Proof. Condition (5.5) gives that S(a) maps A(X) boundedly to 
A(Y). Condition (5.6) ’ pl rm ies S(a) maps M(X) boundedly to M(Y). 
This together with (6.9) implies S(a) maps MO(X) boundedly to 
MO(Y). We now apply Proposition 6.11 and Theorem 4.7. 

Remark 6.13. Notice that Calderon’s theorem involving Lpq 
spaces (and hence our Theorem 5.6) gives the Stein-Weiss theorem 
by the embedding of the LP spaces between Lp* spaces. Theorem 
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6.12, however, only gives the Stein-Weiss theorem “off the diagonal,” 
i.e., for u = [(LPI, LPI), (~9, LQz)], where either p, # q1 or p, # qz . 
In this sense we get better results than Krein and Petunin for our 
scales PL(-V},G~~ . On the other hand, Proposition 6.10 gives an 
interpolation result which we do not consider. 

ACKNOWLEDGMENT 

The author would like to express his sincere gratitude to Professor George Lorentz 
for his generous help. 

REFERENCES 

1. D. W. BOYD, Indices of function spaces and their relationship to interpolation, 
Canad. J. Math. 21 (1969), 1245-1254. 

2. P. L. BUTZER AND H. BE-S, “Semigroups of Operators and Approximation,” 
pp. 165-191, Springer-Verlag, New York, 1967. 

3. A. P. CALDER6N, Spaces between L’ and Lm and the theorem of Marcinkiewicz, 
Studiu Math. 26 (1966), 273-299. 

4. G. H. HARDY, J. E. LITTLEWOOD, AND G. POLYA, “Inequalities,” Cambridge 
University Press, Cambridge, 1934. 

5. S. G. KREIN AND Yu. I. PETUNIN, Scales of Banach spaces, Russian Math. Surveys 
21 (1966), 85-159. 

6. G. G. LORENTZ, “Bernstein Polynomials,” University of Toronto Press, Toronto, 
1953. 

7. G. G. LORENTZ, On the theory of spaces A, PQC$~C J. Math. 1 (1951), 411-429. 
8. G. G. LORENTZ AND T. SHIMOGAKI, Interpolation theorems for operators in func- 

tion spaces, J. Functional Analysis 2 (1968), 31-51. 
9. G. G. LORENTZ AND T. SHIMOGAKI, Interpolation theorems for spaces A, in 

“Abstract Spaces and Approximation” (Proc. Conf., Oberwolfach, 1968), pp. 94- 
98, Birkhauser, Basel, 1969. 

10. W. A. J. LUXEMBURG, Banach function spaces, Thesis Delft Institute of Tech- 
nology, Assen, Netherlands, 1955. 

11. E. T. OAKLANDER, “Interpolation, Espacios de Lorentz y Teorema de Marcin- 
kiewicz,” Cursos y seminarios Fast. 20, Universidad de Buenos Aires, 1965. 

12. E. M. SEMENOV, Imbedding theorems for Banach spaces of measurable functions, 
Soviet Math. Dokl. 5 (1964), 831-834. 

13. E. M. SEMENOV, A new interpolation theorem, Functional Anal. A$@. 2 (1968), 
158-168. 

14. T. SHIMOGAKI, A note on norms of compression operators on function spaces, 
Proc. JQPCW Acad. 46 (1970), 239-242. 

15. T. SHIMOGAKI, Indices of function spaces, preprint. 
16. M. ZIPPIN, Interpolation of operators of weak type between rearrangement 

invariant function spaces, J. Functional Analysis 7 (1971), 267-284. 


