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For two pairs of rearrangement invariant spaces o = [(X;, Y;), (X,, Y]
we give necessary and sufficient conditions for pairs (X, Y) to be weak inter-
mediate for o, i.e., each operator which is of weak types (X;,Y)), 7= 1,2,
also maps X boundedly to Y. Spaces 4,(X) are introduced and are shown to
have many of the properties that characterize Lorentz L?? spaces. Necessary
and sufficient conditions in terms of a simple function F(s, t) are given in order
that (4,(X), 4,(Y)) be weak intermediate for 0. Other properties of the function
F(s,t) yield sufficient conditions and necessary conditions for interpolation
theorems,

1. INTRODUCTION

The purpose of this paper is to provide interpolation theorems for
a general interpolation segment ¢ = [(X;, Y}), (X, Y,)], where all
four spaces are arbitrary, rearrangement-invariant Banach function
spaces. T'wo developments are necessary to proceed: (a) a general
form of Calderén’s weak interpolation theorem, and (b) spaces that
play in the general context the same role as the Lorentz L?? spaces.
These ideas are developed in Sections 4 and 3, respectively; Section 5
combines these ideas in order to obtain some concrete interpolation
theorems.

A Banach space X of real-valued Lebesgue measurable functions
on a possibly infinite interval I = (0, [) is said to be a Banach function
space over I if

lg! <ifl ae andfeX, thengeXand| gl <[ Sl (1.1)
o€ X 1 full < M,and 0 < f, 1 fae,, then fe X and [[f]| < M. (1.2)
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480 SHARPLEY

A Banach function space X is said to be rearrangement invariant
if m{s | | g(s)] > €} << + o for each ¢ > 0 and g € X, and the following
condition is satisfied:

if g€ X and g’ is any function on I equimeasurable
with g, then g'e X and |/ g'|| = || g|.

For spaces of this type we will write, in short, X is a rearrangement-
invariant space.

Examples of rearrangement-invariant spaces include the Lebesgue
L? spaces, the Lorentz A, M, and L?? spaces [6], and Orlicz spaces.

Let X;, Y,, X,, Y, be two pairs of rearrangement-invariant
spaces. If each linear operator which is a bounded operator from X,
to Y;, 7 = 1, 2, has a unique extension to a bounded operator from
X to Y, then the pair (X, Y) is said to be strong intermediate for the
interpolation segment ¢ = [(X;, Y)), (X;, Y,)]. The pair (X, Y) is
said to be weak intermediate for the interpolation segment o if each
linear operator which is a weak-type (X , Y,) operator, 7 = 1, 2, has a
unique extension to a bounded operator from X to Y.

We do not aim at the maximal generality. One could replace in our
theorems the interval / by any nonatomic o-finite measure space, and
linear operators by quasilinear ones. See Calderdn [3].

In Section 2 we give properties of the fundamental function ¢, of a
rearrangement-invariant space X and relate weak-type operators to
bounded operators of Lorentz A and M spaces (see Lorentz [6, Section
3.5]). Section 3 deals with the spaces 4,(X) which are generalizations
of the Lorentz LP? spaces (see [2, 3, 7], or [11]). These may be regarded
as a combination of an L? space with Lebesgue measure and of an L?
space on (0, /) with measure dt/t. One obtains 4,(X) if one puts o =
1/¢q and replaces L? by an arbitrary rearrangement-invariant space X.
We show in Section 3 that A,(X) is reflexive for all 0 << a < 1; in
fact, the conjugate space, modulo renorming, is represented as another
A (Y) space. In Section 4 we define Calderén’s operator and prove
its maximality as a weak-type (X;, Y,) operator (Theorem 4.5).
Theorem 4.7 gives a necessary and sufficient condition for a pair
(X, Y) to be weak intermediate for an interpolation segment. In [16]
Zippin states Theorem 4.7 under the following conditions: L* is dense
in all spaces X;, X,, ¥;, Y,, X, Y; the fundamental indices satisfy
¥x, < 7x,; and the fundamental functions of the spaces X;, X,,
Y, , Y, have the property that for some § > 0, N >0

dx(/br(t) < N -dp()leplt) if 0<s <ot
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and
$x,()/r(t) < N -dx,(5)/p(t) if s>t

We do not require these conditions, but the idea of the proof is still
essentially Calderdn’s [3].

We combine the results of Sections 3 and 4 in Section 5. Here the
question of interpolation is in many cases reduced to calculable
criteria in terms of the behavior of the function F(s, t) which appears
for the first time in Lorentz—Shimogaki [8]. The function F is deter-
mined by the six fundamental functions of the spaces involved; no
deeper properties of the spaces appear in these theorems. Theorems
5.1 and 5.2 give necessary and sufficient conditions for the pairs
(AX), A(Y)) and (M(X), M(Y)), respectively, to be weak inter-
mediate for the interpolation segment o. A sufficient condition for
(X, Y) to be weak intermediate (and hence strong intermediate) for o
is given in Theorem 5.9, while a necessary condition for (X, Y) to be
weak intermediate for o appears in Theorem 5.7. Theorem 5.6 is an
interpolation theorem involving the spaces 4,(X) which generalizes
Calderdn’s result that (LP7, L), 1 <r < o0, is weak intermediate
for o = [(LPy, L%), (L, L%)].

In the last section, 6, we compare the methods of Calderén with
those of Lorentz—Shimogaki (quasiorder <) and Peetre [functionals
K(t, f)]. If the interpolation segment is

5 = [(A(Xy), M(Y1)), (A(X,), M(Yy))]

these methods yield the same intermediate spaces. Also we outline
the proof that the spaces 4,(X) form a scale, in the sense of Krein and
Petunin [5], which connects A(X) and M°X), the norm closure of
L* in M(X).

We will denote by X' the Banach function space consisting of all
measurable functions g on I such that

gl = sup. (13)

Iy <1

ff@ﬂﬂﬁ

is finite, and we denote by X* the conjugate space of X. We will need
the following representation of the norm of X given by Lorentz and
Luxemburg [10]:

flx = sup | [ o)) de].

gl <1

(1.4)

This gives immediately that X" = X.
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Suppose X is a rearrangement-invariant space and let f € X. Then,
by definition, m{x || f(x)| > €} is finite for € > 0. We denote by f*,
the unique, right-continuous decreasing function on I which is equi-
measurable with | f |. We then have that|| f*|; = | f|lx ; in fact,

Il = sup fﬁwﬁwﬁ (1.5)

gxsl

We can now see that X' is a rearrangement-invariant space if X is.
For a function f, if f* exists, we define f**(z) = fo S *(s) ds/t.
We then write 2 < f if A*¥*¥() <f**(@), 0 <t <l By (L.5), if
h<fandfe X,thenhe Xand| 2y <|fly-
We denote by X, 4 X, the sum of two rearrangement-invariant
spaces equipped with the norm

1oy = it {1l 4112 - (L.6)
fZeX

It is clear that X; 4 X, becomes a rearrangement-invariant space
with this norm.
The fundamental function ¢, of a rearrangement-invariant space X

is defined by

ox(t) =l xonllx 0<t <]

where x(o. 5 is the characteristic function of the interval (0, ).
The following proposition appears in the literature:

ProposiTION. 1.1 Let X be a rearrangement-invariant space, then
bxlt) b)) =t 0 <t<I (1.7)
bx(2) is a continuous increasing function on (0, [); (1.8)

For each € > 0, ¢x is absolutely continnous on [, ).
Moreover, there holds dpx(t)/dt < $x(2)/t, a.e. (1.9)

X can be equivalently renormed, by || ||, , say,
so that the resulting fundamental function is concave and satisfies (1.10)

x(t) < bx(t) <26x(1) O0<t <L

Using averages, Semenov proves (1.7) in [13]. Statement (1.8) is
an immediate consequence of (1.7) and the definition of ¢, . Statement
(1.9) is given in [16]; indeed, differentiating ¢,(2) = t/d,-(f), we can
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easily get dp(t)/dt < ¢,(t)/t a.e., since ¢y (f) increases. Statement
(1.10) is given in [12] and a proof appears in [16]. An elementary
proof is given in [15].

We note that if X is any of the spaces L?, 4,,,, My_,;,, L7, or
Lr(log*L)e, then ¢y(t) = #1/7.

Of fundamental importance for us are the two classes of rearrange-
ment-invariant spaces given by

X e % if for some « < 1 there is a pair of positive constants C
and 8 such that (1.11)

dx(w)dx(v) < Clufvyr if vju <8.

X e & if for some 8 > 0, there is a pair of positive constants C
and 68 such that (1.12)

bx(v)/dx(n) < Clofuy if ofu <S8,

ProrosiTioN 1.2. X'e Zif and only if X € %.
Proof. Suppose X’ € Z, then (1.12) holds. Let « = 1 — B, then
ulvdx(v)/dy (1) < Clofu)ft  if ofu < 8.

Remark 1.3. 1f X is the space X with an equivalent norm, then
X e if and only if X € %.

Remark 1.4. The fundamental indices
yx = sup log M(t, X)[log t = lim log M(t, X)/log ¢
* o<t<1 0
and

Px = %I;i; log M(¢, X)/log t = lim log M(2, X)/log ¢,

where M(t, X) = sup, ¢y(st)/ds(s), were introduced by Zippin [16].
We note that X € % is equivalent to 3, < 1, while 0 < Yx 1S equiv-
alent to X € #. The following is known about the fundamental
indices of a rearrangement invariant space:

O<yx<ypx <1, (1.13)
Px=1—yx. (1.14)

It is in the sense that ¥, < 1, that we say X is not “close” to L.

580/11/4-7*
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2. ¢y AND WEAK (X, Y) OPERATORS

We assume throughout this section as well as the rest of the paper
that X has a concave fundamental function ¢, . This is no restriction
by (1.10); the proofs would have to be modified slightly and constants
would have to be introduced in certain inequalities. We first define
extremal rearrangement-invariant spaces A(X) and M(X) (see [12]),
and we show that weak (X, Y) operators are identical with bounded
operators from A(X) to M(Y) except in extreme cases of Y, ie.,
when Y does not belong to the class %.

We define A4(X) to be the set of all /-measurable functions f such
that f* exists and || fli) = jé T *(s) déy(s) is finite. The rearrange-
ment-invariant space M(X) is the set of all f such that f* exists and
| fllsey = supisof ¥*(8)d(2) is finite. A(X) and M(X) are Lorentz A
and M spaces, respectively, even in the case ¢,(0*) 5= 0. In [12] and
[16] it is shown that

AX)C X C M(X) @.1)

with continuous embeddings. Indeed, considering the covariant
decomposition of positive decreasing simple functions and the
covariantly additive property of the norm of A(X), we get A(X) is
continuously contained in X by passing to the limit f * and using (1.2).
We give more detail in the proof of the second containment of (2.1)
since it does not appear in the literature. We make use of Holder’s
inequality for function spaces [10]. Suppose f € X, then

1wy = s0p [ £ &l (0 = sup | | x0.00)176) g 0)]

< SL:P{Hfo M xo.0 lx/éx(t); = Il fllx -

A linear operator 7' is said to be of weak type (X, Y) if T maps
A(X) into the set of measurable functions on / and for some constant
C satisfies

S‘:p{(Tf )* (1) $x(0)} < Clifllaco) (22)

for each f e A(X). The smallest constant C such that (2.2) holds is
denoted || T |lp(x.v) - If we denote by .# the topological vector space
of measurable functions on I with the topology of convergence in
measure on subsets of finite measure, and if 7' is an operator of weak
type (X, Y), then T is a continuous operator from A(X) to .#.
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LemMma 2.1. If Y € %, then for some constant C(Y)

br() < [ sl ds < OO0 23)
fortel
Proof. Since ¢y(s) increases,

b)) = [ dstgrt) < [ Uigrte) .

In order to prove the right-hand side of (2.3), we use (1.11) since
Y e %. Wecanassume é << 1andletr = #/8. Then,

[ 1162 85 = e ) b2 e20) - [ b2t0)b2(9 s
< Cby@ft [l ds < CI(1 — )0
— C(V)r )
since ¢y(t)/dy(r) < 1 and sfr < 5.
THEoREM 2.2. We let || f i = supdf*@)be(t)). If Y € U, then

113 < ey < CY) fllnn (2.4)
for each f e M(Y).
Proof. Since f * decreases, the left-hand side of (2.4) follows from

170 =170 [ dile < [ 726 dje = £250),

On the other hand, suppose || f||¥;y, is finite, then
X6 <A f 3w/ vs)- (2.5)
On integrating (2.5) and applying Lemma 2.1, we obtain
t
40 <l [ 1) dsf

< C) N f lInecn/p(t).

Multiplying both sides of (2.6) by ¢y(¢) and taking the supremum over
all ¢ we obtain

(2.6)

I flaeen < COY) I fllaao -
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CoroLLARY 2.3. If Y € %, then weak-type (X, Y) operators are
equivalent to bounded operators from A(X) to M(Y).

TueorEM 24. If X e &P, then X can be equivalently remormed
such that the resulting fundamental function ¢y has the following pro-
perties:

¢ is concave, (2.7)
t dx(t)/dt is increasing and concave, (2.8)
there is a constant C such that (2.9)

Cgx(ft < dbx(D)dt < dx()ft 1€l

Proof. Since X e &, then X' e %. Applying Lemma 2.1 with
Y = X’ and setting &(£) = [q dx(s)/s ds, we have

bx(t) <P(t) < Chx(t) tel (2.10)
Now we set

|l fllz = max{]|fllx, sgp{f**(t)&(t)}}.

Using the continuous embedding (2.1) and (2.10), it is easy to see that
Iflx <[ flig < Cllfllx-

Also, it is clear that ¢g(f) = §(2), t € I.

(2.7) follows since d(t)/dt = ¢y(t)/t decreases. Since tdd(t)/dt =
&x(t), statement (2.8) follows. (2.9) is a2 combination of (2.7) and the
equivalent renorming.

TuroreM 2.5. Assume Y € U. A necessary and sufficient condition
for an operator to be of weak type (X, Y) is that T is a continuous
operator from A(X) into the space M of measurable functions and for
some constant C satisfies

sup(Txe)* (1) x(t) < Chx(mE), 2.11)

for each measurable E C I.

Proof. The necessity of (2.11) is obvious. To prove the sufficiency,
suppose that f, 1/ *, where {f,} is a sequence of positive decreasing
simple functions. But then f, converges to f* in A(X), so Tf, con-
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verges to Tf* in measure on subsets of I of finite measure. This implies
(Tf,)* converges pointwise to (Tf *)*. By the properties (1.1) and (1.2)
of a Banach function space, it suffices to prove the theorem for f a posi-
tive decreasing simple function, say f(t) = Y'i, 4:X(0.5,(t), where each
a; = 0. Applying Theorem 2.2, statement (2.11), and the covariantly
additive property of the norm of /A(X), we obtain

n

S‘:P(Tf)* @) é®) < Tf ey < z a; || Tx0.5p My

i=1

< CW) Y, afsup(Ty)* () 4r(0)
<C-CY)- 3, o)

— C-C¥)" [ 16)dbx(s) = €+ C¥)* | fllaco-

3. Spaces 4,(X)

We introduce the spaces 4,(X) and show that they possess many of
the properties that characterize the Lorentz L?? spaces. We begin with
Hardy’s inequalities (Lemmas 3.1 and 3.6), proceed to embedding and
norm properties (Corollary 3.3 and Proposition 3.4), and then con-
clude with duality results (Theorem 3.10 and Remark 3.11).

We assume throughout this section that X € & N %. The space
A (X), 0 < a < 1, is the set of all I-measurable functions f such
that f * exists and

1 lasio = {750 sxtope 5 G

is finite.
The spaces 4,(X) appear in [7] where spaces called A, ,/, are
considered with norm

e asf
If one replaces f ** in 4,(X) by f *, which leads to an equivalent norm

as we show below, and assumes, that ¢,(2)'/*/t decreases, then one is
dealing with a A4, /, space.
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It is clear that 4,(X) is a rearrangement-invariant space for each
X and 0 < a < 1. Suppose that X is equivalently renormed and is
denoted by X. By (3.1) it is easy to see that A,(X) = A(X) with
equivalent norms.

From the following lemma emerge the embedding results mentioned
above.

Lemma 3.1.  The functional

ds )
s

12
f o = | O extele
is equivalent to the norm of A(X): for some constant C

1150 < fllag < Cllfll - (32)

Proof. The left inequality holds since f*(f) < f**(¢). For the
right inequality we can first assume that there exist numbers
0 < a < b < Isuch that f * is constant on (0, @) and zero on (b, /) by
the monotone convergence theorem. By Proposition 1.2, X' € &£
since X € %. Applying Theorem 2.4, we denote by Y the space X’
equivalently renormed and satisfying (2.7)~2.9). If we let F(f) =
ﬂ, [*(s) ds, then

[ s sy 2 = | [ﬁff) |

<o [ [ 2" 4

o BT 48

—= — const f :F(t)l/“d[cﬁy(t)—l/“], (3.3)

since Y satisfies (2.9). By (1.12) we have ¢z(0+) = 0 since X € Z.
We apply integration by parts to the last integral in (3.3). Since

—[F@)[$r@O1 " [ < [F@)Sr(D)]V* |,gr < const{F(8)/dx ()] |,
= const[f**(2) gx ()] |,_o+

= const[ f*(a)px(0+)]
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\O

we obtain
[NEARCL0
0
< const | ' (1) F () f3(2) dt

<< const I:f**(t)lla—lf*(t) qﬁx(t)l/a iitﬁ

<eonst ||| (o0 deope S TN 0 maore L 4

by the inequality # - ¢y(£)™* < const ¢,(t) and Hélder’s mequahty
If we can show that the first factor is finite, then we will be done since
we can divide (3.4) by that factor and get the desn‘ed inequality. Since
F*(@pbe(b) = F#4(2) $o(t) when £ € (a, ), then [ [F **(2) go(H)] ()
is finite. We only need to check the two tails of the integral for finiteness.
Since f **(t) = F(b)/t for t € (b, ) we obtain

f : [F**(2) p ()2~ étf = F(p)t/e f :qg x ()= fit{

< const [/ (e o510

< const ¢y(t) 1/ |} < 4-o0.
Since X € &, we denote by X the space X which is renormed

according to Theorem 2.4. But f*¥(t) = f*(a) for ¢ € (0, a), so we
have

i@ xtepse G < consto(ape [ gytopn

< const @1 [ gt

< const f *(a)/de(f)/* | < +oo0.
CoroLLarY 3.2. For 0 < a < 1, we have
A(X)C AX)C M(X)

with continuous embeddings.
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Proof. From the definitions given for the extremal spaces 4 and M
and from (2.1) we see that we need to show

a*bx(f) < dat) < constdy(t) tel, (3.5)
since then A(A4,(X)) = A(X) and M(A,(X)) = M(X) with equiv-

alent norms. For the left-hand inequality notice

wpalt) = o | o dipx(o1f

dgx(s))*
$x(s)

ds 3“

< | b saome

S

< |[ i dxtoe
= Pa,m0(?)

by (1.9) and the fact ¢,(0*) = 0.
Now we denote by X the space X equivalently renormed with
properties of Theorem 2.4. By Lemma 3.1 and (2.9) we obtain

$a,00() = 1| X00.5 lagon < const || x5 14,00

— const :J; bx(s)/e ‘f’ M @

| < const}f P e

= const ¢g(?) < const x(£).

CoroLLARY 3.3 If B < «, then A(X) is continuously embedded in
Ag(X). Moreover, A(X) is dense in Ay(X).

Proof. The last statement follows since simple functions are
dense in 4,(X), 0 < y < 1. This assertion is proved as in the case of
L? spaces.

Now assume || f{l4 x) = 1, then by Corollary 3.2

) dx(®) < fllmeny < 4 -1l fllagn = A.
Since 1/a < 1/B
%) dx(O)[ AP < [f **(2) px(2)] AT,
)

1f lagoo < AI—B/"‘”f“jﬁx) — gi-Ble
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ProrosiTioN 3.4. Suppose 0 < a <B <y <1, then for each
f € A{X) we have
= —X, —Q, "‘(!)
1f lagooy < IF ISR A1

Proof. 'This result follows from Corollary 3.3 and the logarith-
mically convex property of the norm of L? spaces.

Remark 3.5. After a few preparatory lemmas we will be in a
position to prove our duality result. The proof given here is very
similar to that given by Oaklander [11] for L?¢ spaces.

LEMMA 3.6. Suppose h is a positive measurable function on 1 and

satisfies fo [A(s) px(s)P 1= dsls < 1. Iff(2) = f, h(s) ds/s, then|| flla 0 <
where A is independent of h.

Proof. First note that f is a positive decreasing function on I.
By the monotone-convergence theorem we can assume there exist
0 < a < b < I such that & is zero on (0, a) and (b, /). Again we
denote by X the space X equivalently renormed by Theorem 2.4.
Applying Lemma 3.1 and statement (2.9), we obtain

1f g < constj TROTrOI constj [f(s) b2 (s)p/«‘fxé?

— const [ (5)e dge(s)"].
0
Since f is zero on (b, 1), integrating by parts, we get

1 B0 < const (— [ gx(o)= f9p= 7).

But, df(s)/ds = —h(s)[s, so substituting and applying Holder’s
inequality we have

1 B0 < const || £ BE) 0

< const | [ 0 $x01e 27 [ 1) gt
const 53 -

<
But || flla < 11£(2) X004 < constf(a)dx(b) < + 0, so

I fllage << const = 4.
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LemMa 3.7. For each measurable function g on I and 0 << o < 1
!
I8 lagixy = sup [ FH0)8*0) b, (3.6)

where o = 1 — o and A, = = {f1£(2) = [} h(s) ds|s, where h > 0 and
Jo [h(s) u(s)]H/= dsfs = 1}.

Proof. Suppose f € 4, , then using Fubini and Hélder’s inequality
1 1 1 ds 4 nS ds
* — - e -
[ r@ewan= [ g0 [ me)Tae=[ (] g de) his) T

[2 12 ds
= [ g O Mo ds = [ 1675 SO 2] T

ds)

<[ e @ e {7 e g

= [ g llagix-

On the other hand, take M to be any number satisfying
0 < M <|lglla,w - By the monotone-convergence theorem there
exist numbers a, b between 0 and / such that

IR = ()

We shall exhibit an 2 > 0 with the following properties:
@H f@= f, h(s) ds/s belongs to 4, ;
(i) [of *(t) g*(t) dt > M.

Define
h(s) = [g%*(s) x()/BIY* 7 x(5) ™" Xta.0)(5),
where
B =1 L@ dxpr .
Since

[ b — [ (L2000

— 4] e b

dS 1/a’
~1ja’
p iﬁ = |,

we have that (i) is true.
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Assertion (i1) is valid since

[ 1080 = [ g nyar = g [ gerpie ety §

= Bl g — B> M
by (3.7).

We need the following well-known result from the literature
[10; Chapter I, Section 2, Theorem 3] and 5, p. 72];

PRroPOSITION 3.8. Suppose Z is a Banach function space. A necessary
and sufficient condition that
7+ =7

is that || fxg ||z converges to zero as mE goes to zero for each f in Z.
CoroLLARY 3.9. If 0 < o < 1, then
A(X)* = A(X)"
Proof. By Lemma (3.1), we have

i [
fcelacor < const | fxzfh,c0 < const § | [F4(0) tomar(®)dx(defe

But the last eipression converges to 0 with mE by the dominated
convergence theorem, so apply Proposition (3.8) to get the result.

TueoreM 3.10. If 0 < o < 1, then, with equivalent norms,
A X)* = A[(X) = A AX),
where o/ = 1 — a. In particular, A(X) is reflexive for 0 < o < 1.

Proof. In view of Corollary 3.9, we need only show A,(X) =
A, (X"). Suppose g € A,(X')and || flla,0 < 1, then

[rogna<] remg o= [ U Oole O 7
Applying Hélder’s inequality, we obtain

[ rogwa <] reosore [ eeoseors F

<1 g llag.x)
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Hence by the definition of the dual space,
g lla,00 < 118 llagxy -

On the other hand, suppose g € A,(X)". For the norm | g || 4.0 »
we have the formula (3.6). But by Lemma 3.6, if fe 4,, then
Il fllan < 4. Therefore

i
lglavry < sup [ FH0 g0 dt = Alg s

Il 4 x <4

Remark 3.11. We sum up a few additional properties of the spaces
A(X). For a fixed function f, | f|l4 x) is a continuous function of o.
This follows from Proposition 3.4. If « tends to zero, then the norm of
A(X) tends to the norm of M(X) (same as ||| — || {|.» 38 p — 0);
since the simples are dense in /4,(X) the “limit” of the spaces 4,(X) as
a— 0 is the space M°(X),the norm closure of L! (Y L® in M(X). By using
Lemma 3.1 and Theorem 2.4 it is easy to show that 4,(X) = A(X).
Analogous to Theorem 3.10 is the previously known duality result

AX)* = A(X) = M(X)

which is a special case of a theorem given in Lorentz [6, p. 73, Theorem
3.72] for A, 4/, - Also by Theorem 3 in Chapter 1, Section 2 of [10]

we have
MYX)* = A(X).

4. CALDERON’s THEOREM

We begin by stating a theorem due to Calderdn [3]. Our aim is to
extend this theorem to a function-space setting without the restric-
tions of Zippin which were outlined in Section 1. This is our
Theorem 4.7.

Let ¢ be the closed line segment in the unit square connecting the
points («; , B;) and (xg , By), Where oy 5= o, and B, 7 B, . Define the
operator S(o) acting on f pointwise by

SN0 = [ 16) 2% 1),

where

s, 8) = Efz g i:: i

We can now state the theorem of Calderdn:
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THeOREM A (See [3, Theorem 10]). In order that each operator
mapping A, boundedly into M, , , i = 1,2, should have a umigue
extension to a bounded operator from X to Y, it is necessary and sufficient
that S(o) should map X to Y.

We assume that all spaces are renormed to possess concave funda-
mental functions, and we let 0 = [(Xy, Y,), (X, , Y,)]- Instead of the
condition «; # a, we assume the weaker condition

min ¢ (0) = 0 @1

holds. This gives us a minimal separation of the first coordinate of the
interpolation segment o; indeed, if ! <C 00, then at least one of the
spaces A(X,) is not equal to L>.

We now define Calderdn’s operator S(c) for the general situation
(see [16]). Define

Z"g; § fors, tel. (4.2)
Y,

For fixed ¢, ¥ is a continuous increasing concave function of s (the
minimum of two concave functions is concave). By (4.1) we have
lim,_, ¥(s, t) = 0. Hence the function

Y(s, t) = min2

=1

B(s, t) = d¥(s, t)|ds (4.3)
is a positive decreasing function on I and
f " (s, 1) ds = ¥, 1). (4.4)
o

The operator S(o) is defined for each f pointwise by

SO0 = [ 0060 43)

if the integral is absolutely convergent for almost all ¢. The following
two lemmas are available in the literature (see [1, 3], and [16]).

LemMma 4.1.  Suppose f € A(X,) + A(X,), then
S(c)[f*] is a positive decreasing function which is finite valued on I, (4.6)
S(o)[f] is defined, 4.7)
(SN (1) < SEf*1@), allz. (4.8)
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Levma 4.2, The operator S(o) is of weak types (X;, Y2), for
i =1, 2, where o = [(X;, Y,), (X;, Y,)]. In fact, for 1 =1, 2,
I S(U)”w(Xi,Yi) = 1.

The decomposition result which follows is crucial for the proof of
our generalization of Calderén’s theorem.

Lemma 4.3. Let & denote the set of all positive decreasing functions
on 1. If f € 9 then for each t there exist functions f, and f, in D such that

fit+fo=Fand
I fillaxn

f ) (s, 1) ds = 5 i=1,2 (4.9)

Proof. Assume ¢ is fixed. Let E be the subset of I such that s € £
imphes

Px,($)/$1,(t) < $x,(8)/r,(2)- (4.10)

There exists a countable disjoint union of open intervals I; = (a;, b;)
such that (J;; I; = E. Note that we have equality in (4.10) if s = a;
or b;.

We now since f into horizontal pieces as follows: Let gy(s) ==
[min(f (s), f (a;)) — f(b;)]; . The functions g; € Z and satisfy

J a0 0d: = [ g6 a¥(s.1)

= g(0") %—(g% + ([ o) dbx(e) [t

= (] 89 281(0) (0 = N axal s ()

Now let f; = ¥, &, then f; € @ and
[ 500608 =3 [ £ 005, 0ds = T8, Lo

— I, Lol

since the norm of a A space is covariantly additive.

For the function f, consider f — f; . Since f, = lim, o, (f — Zj_1 8
we see that f, € 2 and is constant on each I;. Let E' = I\ E and
notice that @(s, £) = (dey (s)/ds)/$y (t) almost everywhere on E’. The
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exceptional set is the set of isolated points of E’ or where dy (s)/ds or
d¥(s, t)/ds does not exist. So,

[roesns=(] +[ ) o0
=3 |79 0 1) ds - ([ Ak ) [ )
But f, is constant on each I;, so by equality in (4.10)

| :fz(s) 0(s, 1) ds = ([ Si) dbx®) 4 (0) + (] 1) dbx5)) [#10
= Hfz HA(XZ)/"SYz(t)‘

COROLLARY 4.4 If for some tyel, [of *(s) B(s, to) ds < + oo,
then f € A(X,) + A(X,).

Proof. We can assume that f is a positive decreasing function since
A(X,) + A(X,) is a rearrangement-invariant space. Applying Lemma
4.3, we can find functions f; , f, € & such that f; 4+ f, = f and (4.9)
holds. Hence

el fllaxy+axy = ¢ ylig;f:f{\lgl llacxy + 1 g2 llacxy}

< fullaplbrlie) -+ f lacealbrt)
= [ h0 06w 5 + [ £ 06, 1) ds
— [ 16005 19 ds < o,

where ¢ = min,_, 5 (v ()}

THEOREM 4.5. Suppose T is an operator of weak types (X;, Y),),
i = 1,2, then for each f € A(X,) + A(X,),

(TH* (1) < 2 - (max | Tllux,.va) S *10)- (4.11)
Proof. Supposet € I. By Lemma 4.3 there exist positive decreasing

functions f; and f, such that f; + f, = f* and (4.9) holds. Under the

measure-preserving map f * — f(see [3, Lemma 2), we obtain functions
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g1, & such that g.* = f, and g, + g, = f, a.e. Since T is of weak
types (X;, Y;), we have

(Tg)* (¢12) < Tllwix, vy 11 85 lacxp /by (2/2)
= || T lwtx,.vp | fi lacxp/dy (2]2).
But ¢y is concave, so ¢y (£) < 24y (#/2), and

(Teo)* (8/2) < 21| T llwix,.vp * 1 fillaxy/dv(2)
= 2|| Tllwtx,.vp - S(@Lf1@)-

We have the following inequality from [3, p. 290, line 7-]:

(T)* (1) < (Tg)* (12) + (Tg)* (4/2)
SO

(T* (1) < 2Amax | T e, v )S@UE) + SOLLI)
= 2max | Tlue, vg) SELF0)

Remark 4.6. Property (4.11) gives justification for the use of the
terminology ‘“maximal weak-type (X, Y;) operator” in referring to
the operator S(o).

THEOREM 4.7. A necessary and sufficient condition for (X, Y) to be
weak intermediate for o is that for each f € X, S(o)[f] should exist, and

S©)[fl€Y.

Proof. The necessity of the condition i1s obvious since S(o) is a
weak-type (X, Y;) operator and hence must map X to Y.

On the other hand, let us show that the condition is sufficient.
Since S(o) f € Y, S(o) f must be finite almost everywhere. By Corollary
44, f € A(X)) + A(X,). Hence X C A(X,) + A(X,); this embedding
is continuous by the closed-graph theorem. This shows that X is
contained in the domain of any weak-type (X;, ¥,) operator,i = 1, 2,
so the extension of operators is trivial. We need to show that S(o) is
a bounded map from X to Y. Again we employ the closed-graph
theorem. Suppose f,, — fin X and S(o)[ f,] - gin Y, then f, — fin
A(X,) + A(X,) by the continuous embedding. Since S(o) is of weak
types (X;, Y,), ¢ = 1, 2, we have that S(o)[ f,] — S(o)[f] in measure
on subsets of I of finite measure. Since Y is a rearrangement-invariant
space S(o)[f,] — £ in measure on sets of finite measure. Hence
g = S(@)Lf].

We now apply Theorem 4.5.
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Remark 4.8. In [3] and [16] no attempt was made to find the best
constant C such that

Il Tflly < Cli flix>

where Max; | Tllyx, vy < 1,2nd fe X. Theorem 4.5 and Lemma
4.2 do not give us the best constant C, but they do yield

1S(0)llx-y < C < 21 S(o)llx-y -
In the classical case o = [(LP1, L%), (LP:, L%)] we get that
| (o)l or, or =~ 1/6(1 — 6),

where 1/p = 8/p; + (1 — 6)/p; and 1/g = 8/g; + (1 — 0)/ga .
We now interpret Theorem 4.7 into the language of strong inter-
polation theorems.

THEOREM 4.9. Suppose M, € %, i=1,2, and let o =
(44, » M), (A6, M,)]. The pair (X, Y) is trong intermediate for o zf
and only if for each f € X, S(o) f exists and belongs to Y.

5. INTERPOLATION THEOREMS

We assume X;, X,, Y;, Y,, X, and Y have been equivalently
renormed to possess concave fundamental functions and that (4.1)
holds.

We give necessary and sufficient conditions in terms of the function

F(s, t) = Y(s, t) - py(t)/dx(s) s,tel (5.1)

for special spaces, say 4, M, and 4,(X), to be weak intermediate for
an interpolation segment o. Computation involving the function F
also yields a sufficient condition for (X, Y') to be strong intermediate
for o and a necessary condition in order that (X, Y) be weak inter-
mediate for o. These results depend heavily upon the results obtained
in Section 4.

THEOREM 5.1. A necessary and sufficient condition that (A(X), A(Y))
be weak intermediate for o is

f F(s, 2) ‘;‘“é;) <4 sel 5.2)
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Proof. The condition is shown to be necessary by considering
simple functions of the form f () = x( ¢(¢). We assume that (4(X),
A(Y)) is weak intermediate for o. Then by Lemma 4.2.

I S(U)fs hary < 4 Hfs Lacx) -
But by (4.4)

S@f() = Vs 1) tel,
SO

[ 80— ] i - 5

< Al fslaco/dx(s) = 4.

On the other hand, assume (5.2) holds and let 2 be a positive
decreasing simple function, say

M) = 3. axion(®)

=1

where s; € I and a; > 0. By the covariantly additive property of the
norm in A(X) we obtain

Il (o)l < z a; [l S(o) X(0.5 llatx)
= Y} [ Pl 000 dbe)] 42t

<AV adr(s) = AT | ano.) dbxlt)
= A Ao -

Now let f € A(X) and let {k,} be 2 monotone increasing sequence of
positive decreasing simple functions converging to f *. By the mono-
tone-convergence theorem S(o)[k,](f) converges up to S(c)[f *](2).
By Lemma 4.1 and the definition of rearrangement-invariant spaces we
have

I S(o) fllaery < NI S *Wacry < lim [} S(o)Anlllacr)
< 4lim | Ay llacn < Al fllaco -

We finish by applying Theorem 4.7.
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CAN

THEOREM 5.2. Assume X and Ye¥U. A necessary and sufficient

ALY AACVN

condition that (M(X), M(Y)) is weak intermediate for o is
' dx(s)
F(s,ty 72> <A tel 53
‘[0 ( ’ ) be(s) = ( )

Proof. First we make the following observation

J Pty FED — stk 4vte), (54)

where g(s) = 1/¢x(s). To show this, let @, , b, € I such that a, | 0
and b, 1 I If we define

gn(s) = min{g(a,), £(5) X(0,0,0(8)}
then

[ e w0 el

= —2(0) || (s, dlg6)] = $+(0) S 210

using integration by parts since ¥(0 +, t) = 0. Now we use the mono-
tone-convergence theorem to get (5.4) since g, 1 g.
Since X € %, by Theorem 2.2 we get

SL:P{f O (1)} < NI f oo < C(X) Sup{f *(@) (1)}
A similar statement holds for Y. Hence if | fllyu < 1, then
() < g(t) and

1 S©@) Iy <1 S(0) f* Iy <11 S(0)g llmacr

C(Y) sup{S(o)[gl(t) v(1)} < C(¥) - 4

//\ //\

by (5.4) and (5.3).
Condition (5.3) is necessary since || g ||sr(ry < C(X) and so

[ P, 2 = S0 - e(t) <1 S el

< 1S@)lH g llmen < CX) S| =

Remark 5.3. Theorems 5.1 and 5.2 give interpolation theorems
with Lorentz A, and M, spaces since 4, = A(A,) and M, = M(M,).
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For the remainder of this section we require that all spaces belong
to & N %. In this case we have that

fl&;)igA sel (5.5)
0
and
12
fMgA tel (5.6)
0

are equivalent to conditions (5.2) and (5.3), respectively, by Theorem
2.4.

DeriNiTION 5.4. We define the o-finite measure p on I by

HE) = JE%

where E is any Lebesgue measurable subset of I. If g is a measurable
function on I such that u{s| | g(s)] > €} << + oo for each positive ¢,
then we denote by g® the unique right-continuous positive decreasing
function defined on I which is equimeasurable with g in the sense that

mis | g9(s) > €} = pis|18(5)| > ¢}

for each positive e. For each @ > 0, it is clear that there exists a
measurable subset E, of I such that u(E,) = a,

f:gca(s) as = | iﬁi‘%, .7)

a

and
lg(s) < g®(a) sel\ E, ae. (5.8)

Properties (1.1) and (1.2), along with two minor properties, can be
used to define Banach function spaces over the measure space (I, p)
Property (1.4) is, in fact, proved in [10] for Banach function spaces over
arbitrary o-finite measure spaces. Using (1.4), we can easily see that

J-l () gs(s) ds l = sup wf ®(s) g®(s) ds (5.9)

llgliz gyt ¥ 0

I flizey = sup

gl zsquy <1

holds for all rearrangement-invariant spaces Z(u) over (I, p). As in the
case for (I, m) we have

if #® < f©, then || Alize) < |l fllze (5.10)
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by property (5.9). A rearrangement invariant space over (I, p) of
special interest is the space LP(u) used in the discussion below. For
the details of this summary, see Butzer—Berens [2].

LemMma 5.5. Assume conditions (5.5) and (5.6) are satisfied, then

if (f *¢x)® exists, (S(o)[f *] r)® exists and
(S)f*1¢r)® < A(f*$x)®. (5-11)

Proof. We define an operator T for positive functions f as follows
Tf(t) = f M tel
Since dy (s)/ds < ¢z (5)/s a.e., we have
S
S(o) [¢ L @ dutt) = v | O RGRL

<t L ‘(‘))I'P( 1) ds
= Tf(@).

If we can show
(Ine < 4afe (5.12)

for each function f, in particular for f *¢y , then

(SEf*¥1¢0)® < (TIf*¢x])® < A(f*$x)®

and we will be done.
By (5.7) we can find sets E, and E, for a given @ > 0 such that
w(E;) = a and

J‘E ]Tf(t)[ dt f (Tf)® (t) at, fE w = f:f@(s) ds.

1

Now let g(s) = [, F (s, t) dtft, s € I. By (5.5) we have sup,, g(s) <
while (5.6) implies f 0£(s) ds/s < aA. Hence

fo (Tf)® (t) dt = fEl——Tf—(ti)l_dt— < JEI it_ fl F(s, t) |$f(S)| &

_ f’ | f(s)] ds _[E F(s,t)dt _ J‘l |f(5)|;§’(3)ds (5.13)

0 s t 0

by the theorem of Fubini.

580/11/4-8
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By (5.8) we also have
fl L) g(s)ds f | f(s)l £(s) ds . f | f ()1 £(s) ds
$ NE;

0 s §

< J'Ez rf(S)lf(S)d £ foa )f g(S) ds

1\E,

ca WO ol gy,

—af m:,qffca(s)ds

Combining this with inequality (5.13) we obtain the desired result.

THEOREM 5.6. We let A(X) = M(X), then for each 0 < o < 1
(A(X), AL(Y)) is weak intermediate for o if conditions (5.5) and (5.6)
are satisfied. Moreover, (5.5) holds if (Ay(X), A(Y)) is weak inter-
mediate for o, while (A(X), A(Y)) being weak intermediate for o implies
(5.6) is true.

Proof. The second part of the theorem follows from Theorems
5.1 and 5.2 and Remark 5.3. Theorems 5.1 and 5.2 also imply the first
part of the theorem is true for (4,(X), 4,(Y)) and (A4y(X), 4y(Y)).

Now suppose 0 << « << | and let p = 1/a. Consider the rearrange-
ment-invariant space (with respect to u on I) Z = LP(u). Since (5.11)
holds, then (5.10) implies

I S@U 1 by iy < AU bx gy - (5.14)
But (4.8) and (3.2) imply
I S("')fHAa(Y) f *5(")]“k HAQ(Y) < C S(U)f* HAa(Y)

= ClI S@)f*]1 ¢y Il - (5.15)
Again employing (3.2), we have
17l = 11y < 1L - (5.16)

Combining inequalities (5.15), (5.14), and (5.16), we obtain
| S(@)fllaatry < ACH fllagx -
We are done by Theorem 4.7,
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THeOREM 5.7. The condition
F(s,0) <A, stel (5.17)

is necessary in order that (X, Y) be weak intermediate for o.

Proof. Suppose (X, V) is weak intermediate for o, then S(¢) maps
X boundedly into Y. But (2.1) gives that S(o) is 2 bounded map from
A(X) into M(Y). Hence if f, = x5 We have

F(s, ) $x(s) < S(0) fo(2) $y(t) < || S(0) s ey
< A\ fsllax = Adx(s)

for each s, t € I. We then have
F(s, 1) < A.

Remark 5.8. 'The proof above indicates that (5.17) is necessary
and sufficient for each operator of weak types (X;, Y;),7 = 1, 2, to be
an operator of weak-type (X, Y) (covariant additivity of the norm of
A(X)).

Note that the proof, using (2.1), makes use of the fact that each
strong operator mapping X into Y is of weak type (X, Y).

THEOREM 5.9.

[y
ffm@%?gA (5.18)
0vo0

is sufficient for (X, Y) to be weak (and hence strong) intermediate for o.

Proof. As noted in Remark 5.8 each operator T which maps X,
boundedly to Y} is also a weak (X;, Y;) operator. If (X, Y) can be
shown to be weak intermediate for ¢, then T will map X boundedly
to Y. Hence (X, Y) is strong intermediate for o.

If we show that (5.18) implies S(o) maps M(X) boundedly into A(Y),
then by the embedding (2.1) we have that S(¢) maps X boundedly
into Y. We proceed as in Theorem 5.2. Let g(s) = 1/d(s). Suppose
fe M(X) and | flum <1, then f*(t) < 1/¢x(t) = g(2). By (5.4)
we have

(S(@))* (&) < S < S(o) 1)

_ _1__ ! dx(s)
= 5w, T
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So

Sl < [ [ )0l Ex0

Ul F(s, t) ds dt
< A
\fofo s t<A

for each || fllmmn < 1.
From the preceding proof it is easy to see that condition (5.18) is
also necessary in order that (M(X), A(Y)) be weak intermediate for o.

Remark 5.10. In [1] Boyd gives a necessary and sufficient con-
dition for (X, X) to be weak intermediate for ¢ = [(LP1, L?1), (L2, LP?)].
The condition is

ljpy <ox <éx <1/py,

where gy and Gy are the lower and upper indices of X calculated from
the norm of the compression operator on the space X.

Zippin proves in [16] that if L* is dense in all spaces under consi-
deration, then the condition

T, <yx S¥x <yx (5.19)
is sufficient for (X, X) to be weak intermediate for

g — [(Xl ’ Xl)y (X2 4 XZ)]’

where the indices y are discussed in Remark 1.4. It is not difficult to
see that (5.19) implies both (5.2) and (5.3). On the other hand
Shimogaki [14] gives an example of a rearrangement-invariant space X
which satisfies

Lp, <yx <¥x <1/ps,

but (X, X) is not weak intermediate for o = [(LP1, LP1), (LP2, LP2)].
Hence even though (5.2) and (5.3) are sufficient to give many pairs
(see Lemma 5.5) as weak intermediate, they do not give them all.
If in our theorems we let X; = Y, and X = Y, then our results are
not comparable with those of Zippin [16].

6. CoMPARISON TO OTHER INTERPOLATION METHODS

We compare the methods of Calderén with those of Lorentz-
Shimogaki and Peetre for the interpolation segment

& = [(A(Xy), M*(Y1)), (A(Xy), M*(Y)))-
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In both cases the methods are shown to be equivalent up to constants.

For a rearrangement-invariant space X we show that {4,(X)}o<.<1
forms a scale in the sense of [S]. We then compare the theorems
following from this fact to those obtained in Section 5.

We define M¥(Y) = {g |l /) — sup, £*(t)$r(t) < + o).
Notice that M(Y) is continuously embedded in M*(Y) since g*(¢) <
g¥*(¢), but M*(Y) is not a Banach space since || - ||y=(y) is not sub-
additive. M*(Y), however, is a complete quasilinear rearrangement-
invariant function space satisfying properties (1.1) and (1.2). In most
cases, i.e, Ye#, M*Y)= M(Y) with equivalent norms by
Theorem 2.2. The space M*(Y) has the property that bounded
operators from A(X) to M*(Y) are equivalent to weak-type (X, Y)
operators,

DeFINITION 6.1. (see [8]). Suppose o is an interpolation segment
such that (4.1) holds, then we define the quasiorder < with respect
to o by

if geY, + Y, and fe X, + X,, then g < f means the
following: Given any decomposition of f, say f; + f, = f,
where f; € X, , there is a decomposition of g, say g; + g, = g,
where

gey; and I g HY,~ <|fi Hxi , t=1,2.

We define £ % (o) to be the class of all pairs (X, Y) which satisfy
the condition: There is a constant C such that

g < f with respect to o implies f{ glly < C| fllx-

The elementary proof of the following result also works for the
spaces M*, so we extend the definition of < to quasilinear spaces.

ProrosiTiON 6.2. (see Theorem 3 of [8]). If (X, Y)e L F(0),
then (X, Y) is strong intermediate for o.

We still need a further result from the work of Lorentz and
Shimogaki:

ProPOSITION 6.3. (see Proposition 2 of [8]). Let f be a positive
decreasing function on (0, 1) and let f = f, + f,, where f; > 0,7 =
1, 2. Then there exist positive decreasing functions f,' with the properties

i <fiyi=12and fi' + f,' = /.
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LEMMA 6.4. Suppose & = [(A(X,), MXYy), (AX,), M*(Yy))],

then we have
(1) g < f with respect to & implies g*(t) < 2 S(o)[f*1(?), t el
(i) g*2) < S)[f*1(2), t €I implies g < f.
Proof. To prove (i), suppose g < f. By Lemma 4.3 there exist

positive decreasing functions f; and f, such that f; + f, = f* and
(4.9) holds. Since g < f there exist functions g, and g, such that

&1 + 82 = & and
sup g5 y,(8) < fillaxy i=1,2. (6.1)

But, ¢y, is concave, so ¢y (f)/2 < ¢y (#/2). By the inequality of
Calderén, property (6.1), and (4.9) we obtain

(1) < &%) + £7(#2) < 2 /i | axp/bn (D) + [ fe lacy /$7,(D)}
= 2(S(@)AIR) + S@)f(0) = 2S(o)[f *](®)-

For the proof of statement (ii) we first notice that g < fis equivalent
to g < f* since the spaces are rearrangement invariant. Suppose
f*=f, + f,, then we can assume that 0 < f; << f* since A(X))
possesses property (1.1). By Proposition 6.3 we can find positive
decreasing functions f;" such that f,’ + f,’ = f*and f; < f;, so

I HA(XL-) < fs HA(Xi) . (6.2)

Since g (t) S 1) + S(o)[f')(f) and each of the functions
S(o)[ f;'] is positive and decreasing there are two positive decreasing
functions g; and g, such that g, -+ g, = g* and g,(¢) << S(o)[ £;'1(%).
But S(o) is an operator of weak types (X;, Y;), so

gDpr (1) < S(E)F1®) ¢1,() <l filaxy -

Taking the supremum over ¢ and observing (6.2), we get statement (ii).

THEOREM 6.5. Let 6 be as above. The pair (X, Y) is strong inter-
mediate for & if and only if (X, Y) belongs to the class £ F(5).

Proof. The sufficiency follows from Proposition 6.2. For the
necessity, suppose (X, Y) is strong intermediate for 6. Then (X, Y)
is weak intermediate for o = [(X,, Y,), (X,, Y,)]. By Lemma
4.2, S(o) is a bounded operator from X to Y. Suppose g < f with
respect to &, then by Lemma 6.4

£¥(1) < 28(a)f*](@®)-
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But this gives

lglly < 201S(0) f*lly < 211 SO fllx

and so (X, Y) e ZF(5).
Again, we let

o= [(X, 11),(X,, )] and & = [(A(Xy), MH(YY)), (A(Xp), M¥(Y2))]-

We now state an interpolation method of Peetre and compare it with
our results in Section 4.

DeFINITION 6.6. For a pair of Banach function spaces X,, X,
and a ¢t > 0, define the K function norm on X, + X, by

Kt f, Xy, Xp) = flil};f{ﬂfl lix, + il follx,}-

We denote by Z(o) the class of all pairs of Banach function spaces
(X, Y) such that the following condition is satisfied:

For some constant C, K(t, g; V;, Y,) < K(¢, f; X, , X;) all t implies
lglly < Clifllx-

ProrosiTiON 6.7. If (X, Y)e€ P(o), then (X, Y) is strong inter-
mediate for o.

This follows immediately from the elementary fact that
K(If, , Y1, Yy) < (max Il Tll) K(2, f; Xy 5 Xo)-

This is true even if the Y, are quasilinear.
The following lemma was essentially stated without proof in the
introduction of [8].

Lemma 6.8. Suppose (4.1) holds, then

(6 f; A, ACG) = [ £46) d minhe ), )

Proof. Since A(X;) and A(X,) are rearrangement invariant, we
have K(¢, f *) = K(t,f), so we may assume f is positive and decreasing.
We prove that

K, f) = flir}2f=f{||f1 laxy -+t fa llacp)- (6.3)

f:220,0
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Since A(X;) satisfy (1.1) it is certainly clear that we can assume f; > 0.
Using Proposition 6.3, we can select for each decomposition of f, say
f=Ff -+ f., two positive decreasing functions f;’, f,’ such that
fi' + 1 = fandf’ < f,. This gives that

”fl’ ||A(X,v) < “fl “A(X,-) ’ 1= l) 2’

and (6.3) follows.

So, now let f = f; + f,, where f; is positive and decreasing. Let
8 be the interpolation segment [(X,,L'), (X,,L*)]. Note that
¢.:(t) = t, while ¢,(t) = 1, if ¢ > 0. In this case

£ SOU) = [ S0 minthe ) 159
Since S(3) is of weak types (X, , L!) and (X, , L®), we have
tSEAIE) < Il f1llacy

and

SO < Il fellacey -
But
f :f (s)d min(pyx,(s), thx,(s)) = tSE) f1(2) = tSG)LfI2) + tS@)[fa)(?)
< Allaxy + 2 fo llacy -

Taking the infinum over all such decompositions, we get
11
[ 7o) minhx(s), th1(5)) < K, f; A0, ACX)).

For the reverse inequality we use Lemma 4.3 to get a decompo-
sition of f, say f; + f, = f, where f; is positive, decreasing and satisfies

SO = 1 fillaxy 72 i=1,2.
Hence
K(t, f; A(Xy), A X)) < || fillaxy + tl fallacxy
= H(SE)[AI() + SGLLIE) = tSE)S1E)
= [ £ minghe ) 165,0)-

Property (6.5) below provides insight to the selection of the operator
S(o) as the choice for a maximal weak-type (X;, Y;) operator.
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THeOREM 6.9. Let G be as above. The pair (X, Y) is strong inter-
mediate for & if and only if (X, Y) belongs to the class P(g).

Proof. The sufficiency is Proposition 6.7. To prove the necessity,
notice that (X, Y) being strong intermediate for & is equivalent
to (X, Y) being weak intermediate for ¢ = [(X;, Y,), (X,, Y,)].
Now suppose

K(t, g MX(Yy), MX(Ys)) < K(t, f; A(Xy), A(Xp)),  allt. (6.4)

For some constant C, we need || g |y < C||f|lx - But ¢y, is concave, so
(1/2) - ¢y (t) < ¢1,(/2). Hence by the inequality of Calderén, (6.4),
and Lemma 6.8 we have

£ < 20, I, (3920670 ) + S0 (e )
b0
20

<K (S0 £ 406, 40%)

=20 (0)- [ Fdmin ($15), 28 #2,))

= 28(@)[£100). (63)
But S(o) is a bounded operator from X to Y, so

lgly <21 S@EIIflx-

Now we outline the definition and a few of the properties of the
theory of scales of Banach spaces [5]. A family of Banach spaces
X, (0 < o < 1) with norms || f]|(f € X,) is called a scale if

= 2u () K (=, &5 MA(Y), MX(Yy)

Xp is densely embedded in X, when 8 > o« and || f|l, < C(x, B) i flls.  (6-6)
if 0 <o <B <y < 1 there is a finite constant C(«, 8, ¥) such that

[l < Cle, B, y) I FITD070 | f8=2/0-2) gorall feX,. (6.7)

By Corollary 3.3 and Proposition 3.4 it is not hard to see that
{A(X)}o<u<1 forms a scale, where A, (X) is set equal to MX).
In fact, for this scale

tim | fllp = I £l - (6.8)
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Hence the scale {/1,(X)}p<.<; is continuous in the terminology of [5].
This scale can also be equivalently renormed so that C(«, 8, y) < 1
and C(«, B) < e¢. By Theorem 3.10 and Remark 3.11 we can see that
the dual family {4,(X)* },.., forms a scale where 4,(X)*~ is the
closure of L! N L* in A,(X)*. Hence the scale {A,(X)}gc,<; forms
what is called a regular scale.

We define the rearrangement-invariant space F,(X) as the closure
of the set of all f such that

£l = sup ([ £78%(5)ds) [(g ke 1 e < +oo

geA(X’)

in the || ||z, () norm topology in M%X). This construction is called the
“minimal scale” in [5]. Theorem (4.2) of [5] gives that A(X) is
continuously embedded in F,(X) for each «. Also we have the
following:

ProrositioN 6.10 (see Theorem (4.1) of [S]). Each operator
which maps A(X) boundedly to A(Y) and M%(X) boundedly to M*(Y),
15 also a bounded map from A (X) to F(X).

Theorem (8.8) of [5] gives that Fg(X) is continuously embedded in
A(X) for 0 <o < B < 1. This together with Proposition 6.10
gives :

ProrosiTioN 6.11 (see Theorem (8.9) of [S]). Each operator which
maps A(X) boundedly to A(Y) and M%(X) boundedly to MO(Y) is also
a bounded map from Ay (X) to A(Y), where o < B.

THEOREM 6.12 (cf. Theorem 5.6)  Suppose (5.5), (5.6), and
ltiix(}F(s, $)=0 sel (6.9)

hold, then (A(X), A(Y)) is weak intermediate for o for each
0Bl

Proof. Condition (5.5) gives that S(c) maps A(X) boundedly to
A(Y). Condition (5.6) implies S(¢) maps M(X) boundedly to M(Y).
This together with (6.9) implies S(c) maps M%X) boundedly to
MY%Y). We now apply Proposition 6.11 and Theorem 4.7.

Remark 6.13. Notice that Calderén’s theorem involving Lr¢

spaces (and hence our Theorem 5.6) gives the Stein—Weiss theorem
by the embedding of the L? spaces between LP? spaces. Theorem
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6.12, however, only gives the Stein-Weiss theorem “off the diagonal,”

i.e. IUl' g = '_\Lp qu), lL’D« qu}-l Where Cll.ucl. 111 7&- yl or 112 # Ga -

In this sense we get better results than Krein and Petunin for our
scales {/A,(X)}pc.<1 - On the other hand, Proposition 6.10 gives an
interpolation result which we do not consider.
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