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It is hard not to have Ray Redheffer’s title of [2] as a reaction to another article
on the Fundamental Theorem of Algebra. In fact at least 28 notes have appeared
in this Monthly about this theorem. In this note we present nevertheles two proofs
of the Fundamental Theorem of Algebra, which do not seem to have been observed
before and which we think are worth recording. The first one uses Cauchy’s Integral
Theorem and is, in the author’s opinion, as simple as the most popular complex
analysis proof based on Liouville’s theorem (see [3] for this and three other proofs
using complex analysis). The editor of this Monthly did provide a reference to
Problem 5 on pg. 126 of [1], where a proof of the Fundamental Theorem of Algebra
is given based on a similar complex contour integral as here, but the details are
not quite the same. The second one considers the integral obtained by parameter-
izing the contour integral from the first proof and uses only results from advanced
calculus. This proof is similar to the proof of [4], where the same ideas were used
to prove the non-emptiness of the spectrum of an element in a complex Banach
algebra. There the companion matrix of a polynomial was used then to derive the
Fundamental Theorem of Algebra.

Theorem (Fundamental Theorem of Algebra). Every polynomial of degree n ≥ 1
with complex coefficients has a zero in C.

Proof. Let p(z) = zn + an−1z
n−1 + · · ·+ a1z + a0 be a polynomial of degree n ≥ 1

and assume that p(z) 6= 0 for all z ∈ C.
First Proof: By Cauchy’s integral theorem we have∮

|z|=r

dz

zp(z)
=

2πi
p(0)

6= 0,

where the circle is traversed counter clockwise. On the other hand∣∣∣∣∣
∮
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∣∣∣∣∣ ≤ 2πr ·max
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|zp(z)|
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2π

min|z|=r |p(z)|
→ 0 as r →∞

(since |p(z)| ≥ |z|n|(1− |an−1|/|z| − · · · − |a0|/|zn|)|), which is a contradiction.
Second Proof: Define g : [0,∞) × [0, 2π] → C by g(r, θ) = 1/p(reiθ). Then the
function g is continuous on [0,∞)× [0, 2π] and has continuous partials on (0,∞)×
(0, 2π), satisfying ∂g

∂θ = ir · ∂g∂r .
Define now F : [0,∞) → C by F (r) =

∫ 2π

0
g(r, θ) dθ. Then by Leibniz’s rule for

differentiation under the integral sign we have for all r > 0

irF ′(r) = ir

∫ 2π

0

∂g

∂r
dθ =

∫ 2π

0

∂g

∂θ
dθ = g(r, 2π)− g(r, 0) = 0.
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Hence F ′(r) = 0 for all r > 0. This implies that F is constant on [0,∞) with
F (r) = F (0) = 2π

p(0) 6= 0. On the other hand |p(z)| → ∞ uniformly as |z| → ∞
implies that g(r, θ) → 0 as r →∞ uniformly in θ. Therefore F (r) → 0 as r →∞,
which is a contradiction. �
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