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Abstract Frames are constructed on the unit ball Bd in R
d consisting of smooth

functions with small shrinking supports. The new frames are designed so that they
can be used for decomposition of weighted Triebel–Lizorkin and Besov spaces on Bd

with weight wμ(x) := (1 − |x |2)μ−1/2, μ half integer, μ ≥ 0.
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1 Introduction

Bases and frames for spaces of functions or distributions are valuable for various
theoretical and practical reasons. In this article we focus on the problem for
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366 G. Kyriazis, P. Petrushev

construction of multiscale frames on the unit ball Bd in R
d consisting of C∞ functions

with small supports which shrink at higher scales. More precisely, our purpose is to
construct a frame of the form {θξ }ξ∈X , where X = ∪ jX j is a multilevel index set
(X j ⊂ Bd ), and each j th level frame element θξ (ξ ∈ X j ) is supported on B(ξ, c2− j )

the ball centered at ξ ∈ Bd of radius c2− j with respect to the distance

d(x, y) := arccos

{
〈x, y〉 +

√
1 − |x |2

√
1 − |y|2

}
on Bd . (1.1)

Here 〈·, ·〉 and | · | are the Euclidean inner product and norm on R
d , and hence this

is just the geodesic distance between the lifted images of x, y ∈ Bd to the upper unit
hemisphere in R

d+1. In fact, the set X j consisting of the “centers” of the j th level
frame elements will be a δ-net on Bd (δ = c2− j ). The frame {θξ }ξ∈X to be constructed
is reminiscent of compactly supported wavelets on R.

The quality of this tool will be guaranteed by the fact that, as will be shown, {θξ }ξ∈X
can be used for decomposition of weighted Triebel–Lizorkin and Besov spaces on Bd

with weight

wμ(x) := (1 − |x |2)μ−1/2, (1.2)

where μ ≥ 0 is a half integer (2μ is integer).
The construction of � := {θξ }ξ∈X will rely on the general scheme for construc-

tion of frames from [3] and the frames � := {ψξ }ξ∈X (called needlets) for weighted
Triebel–Lizorkin and Besov spaces on Bd developed in [4,8]. The idea is to construct
� by approximating � sufficiently well in a certain sense. The overall undertaking
hinges on weighted orthogonal polynomials on the ball and related techniques. The
gist of our method is in connecting orthogonal polynomials on the ball to the trigono-
metric system through (1) representation of the orthogonal polynomial projectors by
Gegenbauer polynomials [see (2.1)] and (2) the connection of Gegenbauer polynomi-
als with the trigonometric system via the Dirichlet–Mehler formula [see Lemmas 3.4
and (4.5)].

Observe that a similar construction of frames on the sphere has already been devel-
oped in [3]. The inhomogeneity of the current setting on the ball, however, requires
more sophisticated tools and techniques than in the case of the sphere. It is an open
problem to establish the results of this article in the case when 2μ is not integer.

The paper is organized as follows: in Sect. 2 we give all needed prerequisites, which
include (1) the weighted Triebel–Lizorkin and Besov spaces and frames (needlets) on
Bd developed in [4,8] and (2) a description of the general method for construction of
frames from [3]. In Sect. 3 we present the construction of the new frames with small
supports and our main results. Section 4 is an appendix, where we give the proofs of
some results from Sect. 3.

Some useful notation: L p=L p(wμ)will stand for the weighted space L p(Bd , wμ).
We shall denote by B(ξ, r) the ball centered at ξ ∈ Bd of radius r > 0 with respect
to the distance d(·, ·) in (1.1), i.e. B(ξ, r) = {x ∈ Bd : d(x, ξ) < r}. For a measur-
able set E ⊂ Bd we shall denote |E | := ∫

E wμ(x) dx,1E will be the characteristic
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Compactly supported frames on the ball 367

function of E , and 1̃ := |E |−1/21E . Positive constants will be denoted by c, c1, c2, . . .

and they will be allowed to vary at every occurrence; a ∼ b will mean c1 ≤ b/a ≤ c2.

2 Background material

In this section we summarize the main results on weighted Triebel–Lizorkin and
Besov spaces on Bd and frames (needlets) from [4,8] and review the general method
for construction of frames from [3].

2.1 Weighted Triebel–Lizorkin and Besov spaces on Bd

We let�n denote the space of all algebraic polynomials of degree n in d variables and
let Vn be the subspace consisting of all polynomials in �n which are orthogonal to
lower degree polynomials in L2(wμ). It is shown in [12] that the orthogonal projector
Projn : L2(wμ) �→ Vn can be written as

(Projn f )(x) =
∫

Bd

f (y)Pn(x, y)wμ(y)dy, (2.1)

where for μ > 0 the kernel Pn(x, y) has the representation

Pn(x, y) = bμd b
μ− 1

2
1

n + λ

λ

1∫
−1

Cλ
n

(
〈x, y〉 + u

√
1 − |x |2

√
1 − |y|2

)

×(1 − u2)μ−1du. (2.2)

Here Cλ
n is the n-th degree Gegenbauer polynomial, λ := μ+ d−1

2 , and the constants

bμd , b
μ− 1

2
1 are defined by (bγd )

−1 := ∫
Bd (1 − |x |2)γ−1/2dx . For a representation of

Pn(x, y) in the limiting case μ = 0, see (4.2) in [8].
It is straightforward to see that [8, Lemma 5.3] for r < c, ξ ∈ Bd ,

|B(ξ, r)| :=
∫

B(ξ,r)

wμ(x) dx ∼ rd(r +
√

1 − |ξ |2)2μ ∼ rd(r + d(ξ, ∂Bd))2μ,

(2.3)

where ∂Bd is the boundary of Bd , i.e. the unit sphere in R
d .

In [4] weighted Triebel–Lizorkin (F-spaces) and Besov spaces (B-spaces) on Bd

are defined via orthogonal polynomial decompositions on Bd (based on the idea of
abstract Besov spaces of J. Peetre [6] and H. Triebel [10,11]). To be specific, we let D
denote the set of test functions on Bd consisting of all C∞ complex valued functions
on Bd such that
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368 G. Kyriazis, P. Petrushev

‖φ‖W k∞ :=
∑
|α|≤k

‖∂αφ‖L∞ < ∞ for k = 0, 1, . . . . (2.4)

The topology in D is defined by these norms and as is shown in [4] it can be equivalently
defined by the semi-norms

Nk(φ) := sup
n≥0

(n + 1)k‖ Projn φ‖L2 , k = 0, 1, . . . . (2.5)

The space D′ = D′(Bd) of distributions on Bd is defined as the set of all contin-
uous linear functionals on D. The pairing of f ∈ D′ and φ ∈ D will be denoted
by 〈 f, φ〉 := f (φ) and as is shown in [4] it is consistent with the inner product
〈 f, g〉 := ∫

Bd f (x)g(x)wμ(x)dx in L2(wμ).
If f ∈ D′ and � : Bd × Bd �→ C is such that �(x, ·) ∈ D for all x ∈ Bd , then

we let (� ∗ f )(x) := 〈 f,�(x, ·)〉, where on the right f acts on�(x, y) as a function
of y. Let

�0(x, y) := P0(x, y) and � j (x, y) :=
∞∑
ν=0

â
( ν

2 j−1

)
Pν(x, y), j ≥ 1,

where Pν(·, ·) is from (2.2) and â satisfies the conditions

(1) â ∈ C∞[0,∞), supp â ⊂ [1/2, 2],
(2) |â(t)| > c > 0 if t ∈ [3/5, 5/3]. (2.6)

Definition 2.1 Let s, ρ ∈ R, 0 < p < ∞, 0 < q ≤ ∞. The Triebel–Lizorkin space
Fsρ

pq is defined as the set of all f ∈ D′ such that

‖ f ‖Fsρ
pq

:=

∥∥∥∥∥∥∥

⎛
⎝ ∞∑

j=0

(2(s−ρ) j |B(·, 2− j )|−ρ/d |� j ∗ f (·)|)q
⎞
⎠

1/q
∥∥∥∥∥∥∥

L p

< ∞. (2.7)

Definition 2.2 Let s, ρ ∈ R, 0 < p, q ≤ ∞. The Besov space Bsρ
pq is defined as the

set of all f ∈ D′ such that

‖ f ‖Bsρ
pq

:=
⎛
⎝ ∞∑

j=0

(
2(s−ρ) j‖|B(·, 2− j )|−ρ/d |� j ∗ f (·)|‖L p

)q

⎞
⎠

1/q

< ∞. (2.8)

There is a change of notation in the above definitions compared to [4], which we
think makes them more transparent, namely, in [4] the quantities |B(·, 2− j )| above are

replaced by 2− jd Wμ(2 j ; ·), where Wμ(2 j ; x) :=
(√

1 − |x |2 + 2− j
)2μ

. By (2.3),

however, |B(·, 2− j )| ∼ 2− jd Wμ(2 j ; ·) and hence these are equivalent norms.
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Compactly supported frames on the ball 369

Note that as shown in [4] the above definitions of Triebel–Lizorkin and Besov
spaces are independent of the choice of â provided conditions (2.6) are satisfied.

Two types of weighted Triebel–Lizorkin and Besov spaces are of main interest:
Fs0

pq , Bs0
pq and Fss

pq , Bss
pq . For instance, as is shown in [4] Besov spaces of the form Bss

ττ

are the natural spaces associated with nonlinear n-term approximation from localized
frames (needlets) in L p(wμ), while the approximation spaces of linear approximation
from algebraic polynomials in L p(wμ) are of the form Bs0

pq . The forth parameter ρ
above was introduced in [4] in order to unify these spaces and handle them simulta-
neously. We refer the reader to [4] for more details on the subject.

2.2 Frames (needlets) on Bd

In this part we describe the construction of frames in [4], called needlets. These are
smooth well localized but global functions on Bd . We shall defer from [4] in two ways:
(1) We shall deal here with a single frame, which is a particular case of the construction
in [4] where pairs of dual frames are used, and (2) In the definition of the frame here
there will be an insignificant shift in the indices. Let â satisfy the conditions

(1) â ∈ C∞[0,∞), â ≥ 0, supp â ⊂ [1/2, 2],
(2) â(t) > c > 0, if t ∈ [3/5, 5/3],
(3) â2(t)+ â2(2t) = 1, if t ∈ [1/2, 1]

(2.9)

and hence,

∞∑
j=0

â2(2− j t) = 1, t ∈ [1,∞). (2.10)

Choose j0 ≥ −1 so that 2 j0 ≤ λ < 2 j0+1. (Recall that λ := μ+ d−1
2 ≥ 1/2 and λ is

half integer.) We define the kernels {� j } by

� j :=
∞∑
ν=0

â

(
ν + λ

2 j

)
Pν, j ≥ j0, (2.11)

where in the case λ = 1/2 we set� j0 := P0. From (2.10, 2.11) it follows that for any
f ∈ D′

f =
∞∑

j= j0

� j ∗� j ∗ f in D′. (2.12)

This identity also holds in L p(wμ) if f ∈ L p(wμ), 1 ≤ p < ∞, and in L∞ for
continuous functions. It is reminiscent of the classical Calderón reproducing formula
on R

d and is further descritized in [4] (see also [8]) by using appropriate cubature
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formulas. In particular, as is shown in [8] there exists a set X j ⊂ Bd and weights
{λξ }ξ∈X j such that the cubature formula

∫

Bd

f (x)wμ(x)dx ∼
∑
ξ∈X j

λξ f (ξ) (2.13)

is exact for all polynomials of degree ≤ 2 j+2 in d variables. Furthermore, there is a
disjoint partition {Rξ }ξ∈X j of Bd (∪ξ∈X j Rξ = Bd ) such that Rξ is “centered” at ξ and
the points in X j are almost uniformly distributed, i.e. there exist constants c∗, c� > 0
such that

B(ξ, c∗2− j ) ⊂ Rξ ⊂ B(ξ, c�2− j ), ξ ∈ X j . (2.14)

In addition,

λξ ∼ |B(ξ, 2− j )|, ξ ∈ X j , (2.15)

with constants of equivalence depending only on μ and d. The j th level needlets are
defined by

ψξ (x) := λ
1/2
ξ � j (ξ, x), ξ ∈ X j , (2.16)

and the entire needlet system by

� := {ψξ }ξ∈X , where X := ∪∞
j= j0X j . (2.17)

Here equal points from different levels X j are regarded as distinct points of the index
set X .

As shown in [8] the needlets have almost exponential localization, namely, for any
k > 0 there exists a constant ck > 0 such that for any ξ ∈ X j

|ψξ (x)| ≤ ck√|B(ξ, 2− j )|(1 + 2 j d(ξ, x))k
, x ∈ Bd . (2.18)

The discretization of (2.12) by using cubature formulas (2.13) entails the following
representation result: For any f ∈ D′

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ in D′. (2.19)

Also, it is easy to show [8] that � is a tight frame for L2(wμ), i.e. for f ∈ L2(wμ)

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ in L2(wμ) and ‖ f ‖L2(wμ)
= ‖(〈 f, ψξ 〉)‖�2(X ). (2.20)
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Compactly supported frames on the ball 371

We next define the sequence spaces f sρ
pq and bsρ

pq associated with the spaces Fsρ
pq

and Bsρ
pq , respectively.

Definition 2.3 Suppose s, ρ ∈ R, 0 < p < ∞, and 0 < q ≤ ∞. Then f sρ
pq is defined

as the space of all complex-valued sequences h := {hξ }ξ∈X such that

‖h‖ f sρ
pq

:=
∥∥∥∥
⎛
⎝ ∞∑

j= j0

2(s−ρ) jq
∑
ξ∈X j

[|hξ ||B(ξ, 2− j )|−ρ/d 1̃Rξ (·)]q

⎞
⎠

1/q ∥∥∥∥
L p

< ∞

(2.21)

with the usual modification for q = ∞. Recall the notation 1̃Rξ := |Rξ |−1/21Rξ with
1Rξ being the characteristic function of Rξ .

Definition 2.4 Let s, ρ ∈ R and 0 < p, q ≤ ∞. Then bsρ
pq is defined as the space of

all complex-valued sequences h := {hξ }ξ∈X such that

‖h‖bsρ
pq

:=
⎛
⎜⎝

∞∑
j= j0

2(s−ρ) jq

⎡
⎣∑
ξ∈X j

(
|B(ξ, 2− j )|−ρ/d+1/p−1/2|hξ |

)p

⎤
⎦

q/p
⎞
⎟⎠

1/q

(2.22)

is finite, with the usual modification for p = ∞ or q = ∞.

The main result in [4] asserts that � is a frame for Triebel–Lizorkin and Besov
spaces on Bd in the sense of the following theorem.

Theorem 2.5 [4] Let s, ρ ∈ R and 0 < p, q < ∞.

(a) If f ∈ D′, then f ∈ Fsρ
pq if and only if (〈 f, ψξ 〉)ξ∈X ∈ f sρ

pq . Moreover, if f ∈ Fsρ
pq ,

then

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ and ‖ f ‖Fsρ
pq

∼ ‖(〈 f, ψξ 〉)‖ f sρ
pq
. (2.23)

(b) If f ∈ D′, then f ∈ Bsρ
pq if and only if (〈 f, ψξ 〉)ξ∈X ∈ bsρ

pq . Moreover, if f ∈ Bsρ
pq ,

then

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ and ‖ f ‖Bsρ
pq

∼ ‖(〈 f, ψξ 〉)‖Bsρ
pq
. (2.24)

The convergence in (2.23) and (2.24) is unconditional in Fsρ
pq and Bsρ

pq , respec-
tively.
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372 G. Kyriazis, P. Petrushev

2.3 General scheme for construction of frames

Here we describe the method for construction of frames developed in [3]. Assume that
H is a separable complex Hilbert space (of functions) and S ⊂ H is a linear subspace
(of test functions) furnished with a locally convex topology induced by a sequence
of norms or semi-norms. Let S ′ be the dual of S consisting of all continuous linear
functionals on S and assume that H ⊂ S ′.

Assume further that L ⊂ S ′ with norm ‖ · ‖L is a quasi-Banach space of distri-
butions, which is continuously embedded in S ′,S ⊂ H ∩ L and S is dense in H
and L .

We also assume that �(X ) with norm ‖ · ‖�(X ) is an associated to L quasi-Banach
space of complex-valued sequences with domain a countable index set X . Coupled
with a frame� the sequence space �(X )will be used for characterization of the space
L . In addition to being a quasi-norm we assume that ‖ · ‖�(X ) obeys the conditions:

(1) For any sequence (hη)ξ∈X ∈ �(X ) one has ‖(hξ )‖�(X ) = ‖(|hξ |)‖�(X ) and
|hξ | ≤ c‖h‖�(X ) for ξ ∈ X .

(2) If the sequences (hξ )ξ∈X , (gξ )ξ∈X ∈ �(X ) and |hξ | ≤ |gξ | for ξ ∈ X , then
‖(hξ )‖�(X ) ≤ c‖(gξ )‖�(X ).

(3) Compactly supported sequences are dense in �(X ).

The existing (old) frame. Our next assumption is that � := {ψξ }ξ∈X ⊂ S, where X
is a countable index set, is a frame for H , that is, for any f ∈ H

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ in H and ‖ f ‖H ∼ ‖(〈 f, ψξ 〉)‖�2(X ). (2.25)

More importantly, we assume that � is a frame for L in the following sense:

A1. For any f ∈ L

f =
∑
ξ∈X

〈 f, ψξ 〉ψξ in L . (2.26)

A2. For any f ∈ L , (〈 f, ψξ 〉)ξ ∈ �(X ), and

c1‖ f ‖L ≤ ‖(〈 f, ψξ 〉)‖�(X ) ≤ c2‖ f ‖L . (2.27)

The goal is by “small perturbation” of the elements of the existing frame � to
construct a new system � := {θξ : ξ ∈ X } with some prescribed features, which is a
frame for L in the following sense:

Definition 2.6 We say that � := {θξ : ξ ∈ X } ⊂ H is a frame for the space L with
associated sequence space �(X ) if the following conditions are obeyed:
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Compactly supported frames on the ball 373

B1. There exist constants c1, c2 > 0 such that

c1‖ f ‖L ≤ ‖(〈 f, θξ 〉)‖�(X ) ≤ c2‖ f ‖L for f ∈ L , (2.28)

where 〈 f, θξ 〉 is defined by 〈 f, θξ 〉 := ∑
η∈X 〈 f, ψη〉〈ψη, θξ 〉.

B2. The frame operator S : L �→ L defined by

S f =
∑
ξ∈X

〈 f, θξ 〉θξ

is bounded and invertible on L; S−1 is also bounded on L and

S−1 f =
∑
ξ∈X

〈 f, S−1θξ 〉S−1θξ in L .

B3. There exist constants c3, c4 > 0 such that

c3‖ f ‖L ≤ ‖(〈 f, S−1θξ 〉)‖�(X ) ≤ c4‖ f ‖L for f ∈ L , (2.29)

where as above by definition 〈 f, S−1θξ 〉 := ∑
η∈X 〈 f, ψη〉〈ψη, S−1θξ 〉.

B4. For any f ∈ L

f =
∑
ξ∈X

〈 f, S−1θξ 〉θξ =
∑
ξ∈X

〈 f, θξ 〉S−1θξ in L . (2.30)

Above “in H” or “in L” means that the convergence is unconditional in H or in L .
Construction of a new frame. The key idea of the method from [3] for construct-

ing a new frame � := {θξ : ξ ∈ X } for L (as described above) is to build {θξ } with
appropriate localization and approximation properties with respect to the given tight
frame �. The localization of � is measured in terms of the size of the inner products
〈ψξ ,ψη〉, 〈θη, ψξ 〉, 〈ψξ , θη〉. More precisely, we construct {θξ } so that the operators
with matrices

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη,ψξ 〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ 〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ 〉,

(2.31)

are bounded on �2(X ) and �(X ). The approximation property of � is measured in
terms of the size of the inner products 〈ψη,ψξ − θξ 〉, 〈ψη − θη, ψξ 〉. Namely, we
construct {θξ } so that the operators with matrices

D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη,ψξ − θξ 〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ 〉, (2.32)
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374 G. Kyriazis, P. Petrushev

are bounded on �2(X ) and �(X ) and for a sufficiently small ε > 0

‖D‖�2(X ) �→�2(X ) ≤ ε, ‖E‖�2(X ) �→�2(X ) ≤ ε, (2.33)

‖D‖�(X ) �→�(X ) ≤ ε, ‖E‖�(X ) �→�(X ) ≤ ε. (2.34)

Notice that C = B∗ the adjoint of B and E = D∗.
We shall utilize the following results from [3].

Theorem 2.7 Let � := {ψξ : ξ ∈ X } ⊂ S be a frame for H and L as described
above. Suppose the system � := {θξ : ξ ∈ X } ⊂ H is constructed so that the oper-
ators with matrices A,B,C,D,E from (2.31), (2.32) are bounded on �(X ) and C,D
are bounded on �2(X ) as well. Then if for a sufficiently small ε > 0 the matrices D,E
obey (2.33), (2.34), the sequence � is a frame for L in the sense of Definition 2.6.

Most importantly, if f ∈ S ′, then f ∈ L if and only if (〈 f, S−1θξ 〉) ∈ �(X ), and
for f ∈ L

f =
∑
ξ∈X

〈 f, S−1θξ 〉θξ in L and ‖ f ‖L ∼ ‖(〈 f, S−1θξ 〉)‖�(X ). (2.35)

3 New frame with elements of small shrinking supports on Bd

In this section we present our construction of the desired new frame on the ball and
show that the new frame can be used for decomposition of weighted Triebel–Lizorkin
and Besov spaces on Bd . For convenience we shall divide the proof of our main result
into several parts.

3.1 Construction of the new frame

To construct our new frame with elements of small support on Bd will utilize the
results form Sect. 2.3, where H := L2(Bd); S := D and S ′ := D′ are the classes of
test functions and distributions from Sect. 2.1, L := Fsρ

pq or L := Bsρ
pq , the F− or B−

spaces from Sect. 2.1.The role of the old frame will be played by the needlet frame
� described in Sect. 2.2 and the sequence space �(X ) := f sρ

pq or �(X ) := bsρ
pq , the

f − or b− spaces from Sect. 2.1. It is readily seen that these spaces and the frame �
satisfy all the requirements from Sect. 2.3.

As suggested by Theorem 2.7 the new frame � := {θξ }ξ∈X should be constructed
to be well “localized” and sufficiently “close” to the needlet system �.

Combining (2.16) with (2.11) shows that the needlets {ψξ } have the representation

ψξ (x) := λ
1/2
ξ

∞∑
ν=0

â

(
ν + λ

2 j

)
Pν(ξ, x), ξ ∈ X j , j > j0,

where â is from (2.9). Denote again by â the even extension of â to R, i.e. â(−t) = â(t).
We shall use the following definition of the Fourier transform f̂ of a function f on R:
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Compactly supported frames on the ball 375

f̂ (ξ) := ∫
R

f (y)e−iξ ydy. Then the inverse Fourier transform a of â is real valued,
even, and belongs to the Schwartz class S of rapidly decaying C∞ functions on R.

Recall our assumption that μ ≥ 0 and 2μ ∈ N0.
We shall construct the new frame � of the form � := {θξ }ξ∈X , where X :=

{X j } j≥ j0 is the index set of the needlet system � and supp θξ ⊂ B(ξ, c2− j ). We
proceed in two steps:

Step 1: Given M > 1, an integer N ≥ 1, and ε > 0, we construct g ∈ C∞(R) so
that g is even and obeys the following conditions:

(1) supp g ⊂ [−R, R] for some R > 0,
(2) |a(r)(t)− g(r)(t)| ≤ ε(1 + |t |)−M for 0 ≤ r ≤ N + 2μ+ d − 1,
(3)

∫
R

tr g(t) dt = 0 for 0 ≤ r ≤ N + 2μ+ d − 2.

(3.1)

Note that the Fourier transform ĝ of g is even and belongs to S. A function
g of this sort has already been constructed and used for the development
of frames on the sphere in [3]. For the reader’s convenience we sketch the
somewhat simplified construction of g in comparison with [3] in the appen-
dix.

Step 2: For any ξ ∈ X j ( j > j0) we define θξ by

θξ (x) := λ
1/2
ξ

∞∑
ν=0

ĝ

(
ν + λ

2 j

)
Pν(ξ, x) (3.2)

and set θξ := ψξ if ξ ∈ X j0 . Then � := {θξ }ξ∈X is our new system on Bd .

With the next theorem we show that for appropriately selected parameters M, N ,
and ε the new system � has the claimed support property and is a frame for the
F- and B-spaces.

In the following we shall use the notation J := (d + 2μ)/min{1, p, q} in the case
of F-spaces and J := (d + 2μ)/min{1, p} for B-spaces.

Theorem 3.1 Suppose μ ∈ 2N0, s, ρ ∈ R, 0 < p, q < ∞ and let � := {θξ }ξ∈X be
the system constructed above, where

M>J +2μ|ρ/d + 1/2| and N > max{s,J − d − s, 1}+(4μ+ 2d)|ρ/d+1/2|.

Then for a sufficiently small ε > 0 the system� is a frame for the spaces L2(Bd), Fsρ
pq ,

and Bsρ
pq in the sense of Definition 2.6 with the above selection of the spaces

H, L , �(X ). In particular, we have

(a) The operator

S f :=
∑
ξ∈X

〈 f, θξ 〉θξ , (3.3)
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where 〈 f, θξ 〉 := ∑
η∈X 〈 f, ψη〉〈ψη, θξ 〉, is bounded and invertible on

L2(Bd), Fsρ
pq , Bsρ

pq , and S−1 is also bounded on L2(Bd), Fsρ
pq , Bsρ

pq , and

S−1 f =
∑
ξ∈X

〈 f, S−1θξ 〉S−1θξ . (3.4)

(b) If f ∈ D′, then f ∈ Fsρ
pq if and only if (〈 f, S−1θξ 〉) ∈ f sρ

pq , and for f ∈ Fsρ
pq

f =
∑
ξ∈X

〈 f, S−1θξ 〉θξ and ‖ f ‖Fsρ
pq

∼ ‖(〈 f, S−1θξ 〉)‖ f sρ
pq
. (3.5)

(c) If f ∈ D′, then f ∈ Bsr
pq if and only if (〈 f, S−1θξ 〉) ∈ bsρ

pq , and for f ∈ Bsρ
pq

f =
∑
ξ∈X

〈 f, S−1θξ 〉θξ and ‖ f ‖Bsr
pq

∼ ‖(〈 f, S−1θξ 〉)‖bsr
pq
. (3.6)

The convergence in (3.3)–(3.6) is unconditional in the respective space L2, Fsρ
pq , or

Bsρ
pq . Above, (b) and (c) also hold with the roles of θξ and S−1θξ interchanged.
Moreover, for any ξ ∈ X j , j ≥ j0, the frame element θξ is supported on the ball

B(ξ, c∗2− j ) ⊂ Bd, where c∗ = πR/2 with R > 0 the constant from (3.1).

3.2 Almost diagonal matrices

By Theorem 2.7 it readily follows that the new system � := {θξ : ξ ∈ X } will be a
frame for Fsρ

pq (or Bsρ
pq ) if the operators with matrices

A := (aξ,η)ξ,η∈X , aξ,η := 〈ψη,ψξ 〉,
B := (bξ,η)ξ,η∈X , bξ,η := 〈θη, ψξ 〉,
C := (cξ,η)ξ,η∈X , cξ,η := 〈ψη, θξ 〉
D := (dξ,η)ξ,η∈X , dξ,η := 〈ψη,ψξ − θξ 〉,
E := (eξ,η)ξ,η∈X , eξ,η := 〈ψη − θη, ψξ 〉,

(3.7)

are bounded on f sρ
pq (or bsρ

pq ), and ‖D‖ f sρ
pq �→ f sρ

pq
≤ ε, ‖E‖ f sρ

pq �→ f sρ
pq

≤ ε (or we have
‖D‖bsρ

pq �→bsρ
pq

≤ ε, ‖E‖bsρ
pq �→bsρ

pq
≤ ε) for sufficiently small ε.

In analogy with the classical case on R
n (see [2]), we shall show the boundedness

of the above operators by using the machinery of the almost diagonal operators.
To avoid complicated indices we shall use the notation

r(ξ) := 2− j if ξ ∈ X j , (3.8)

i.e. r(ξ) is the radius of B(ξ, 2− j ), and

Bξ := B(ξ, 2− j ) if ξ ∈ X j . (3.9)
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Definition 3.2 Let A be a linear operator acting on sequences of the form {hξ }ξ∈X
with associated matrix (aξη)ξ,η∈X . We say that A is almost diagonal if there exists
δ > 0 such that

sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

< ∞,

where

ωδ(ξ, η) :=
(

r(ξ)

r(η)

)s−ρ−d/2 ( |Bξ |
|Bη|

)ρ/d+1/2 (
1 + d(ξ, η)

max{r(ξ), r(η)}
)−J −δ

× min

{(
r(ξ)

r(η)

)(d+δ)/2
,

(
r(η)

r(ξ)

)(d+δ)/2+J −d
}
,

with J := (d + 2μ)/min{1, p, q} for f sρ
pq and J := (d + 2μ)/min{1, p} for bsρ

pq .

We shall show that the almost diagonal operators are bounded on f sρ
pq and bsρ

pq .
More precisely, with the notation

‖A‖δ := sup
ξ,η∈X

|aξη|
ωδ(ξ, η)

(3.10)

the following result holds:

Theorem 3.3 Suppose s ∈ R, 0 < q ≤ ∞, and 0 < p < ∞ (0 < p ≤ ∞ in the case
of b-spaces) and let ‖A‖δ < ∞ (in the sense of Definition 3.2) for some δ > 0. Then
there exists a constant c > 0 such that for any sequence h := {hξ }ξ∈X ∈ f sr

pq

‖Ah‖ f sρ
pq

≤ c‖A‖δ‖h‖ f sρ
pq
, (3.11)

and for any sequence h := {hξ }ξ∈X ∈ bsr
pq

‖Ah‖bsρ
pq

≤ c‖A‖δ‖h‖bsρ
pq
. (3.12)

For the proof of this theorem we shall use the idea of the proof of Theorem 3.3 in
[2]. We give it in the Appendix.

3.3 Estimation of supp θξ and localization of kernels

We shall have to deal with kernels of the form

�n(x, y) :=
∑
ν≥0

σ̂

(
ν + λ

n

)
Pν(x, y), (3.13)
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where the function σ has a certain decay and smoothness properties. The explicit
representation of Pν(x, y) in (2.2) leads to

�n(x, y) = bμd b
μ− 1

2
1

1∫
−1

Qn

(
〈x, y〉 + u

√
1 − |x |2

√
1 − |y|2

)
(1 − u2)μ−1du,

(3.14)

where μ > 0 and

Qn(x) :=
∑
ν≥0

σ̂

(
ν + λ

n

)
ν + λ

λ
Cλ
ν (x). (3.15)

Lemma 3.4 Let 2μ ∈ N0 and λ = μ + d−1
2 . Then for any even function σ ∈ S the

kernel Qn from above has the representation

Qn(cosα) = c(sin α)1−2λ

π∫
α

(cosα − cosϕ)λ−1 Kn(ϕ)dϕ, 0 ≤ α ≤ π, (3.16)

where

Kn(α) = (π/2)n
∑
ν∈Z

(−1)ν(2μ+d−1)S

(
d

dα

)
σ(n(α + 2πν)) (3.17)

with

S(z) :=
�μ+ d−1

2 �∏
r=1

(−z2 − (λ− r)2)×
{−z sin λπ, 2μ+ d even

cos λπ, 2μ+ d odd
(3.18)

and c > 0 depends only on d and μ.

This key lemma is quite similar to Proposition 3.2 in [5] and Lemma 3.11 in [3].
For the reader’s convenience we give its proof in the Appendix.

We next use the above lemma to establish localization estimates, first, for Qn from
(3.15) and, second, for the kernels �n from (3.13).

Lemma 3.5 If σ ∈ S (the Schwartz class) is even and

|σ (m)(t)| ≤ A

(1 + |t |)M
, t ∈ R, 0 ≤ m ≤ 2μ+ d − 1, (3.19)

for some constants M > 1 and A > 0, then

|Qn(cosα)| ≤ c1 An2μ+d

(1 + nα)M
, 0 ≤ α ≤ π, (3.20)
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and

|�n(x, y)| ≤ c2 A√|B(x, n−1)|√|B(y, n−1)|(1 + n d(x, y))M
, x, y ∈ Bd . (3.21)

Here c1, c2 > 0 depend only on M, μ, and d.

Proof Representation (3.17) and the fact that S(z) from (3.18) is a polynomial of
degree 2μ+ d − 1 readily imply

|Kn(α)| ≤ cAn
∑
ν∈Z

n2μ+d−1

(1 + n|α + 2πν|)M
≤ cAn2μ+d

(1 + nα)M
.

We use this in (3.16) precisely as in the proof of Lemma 2 in [7] to obtain (3.20).
Finally, we use (3.20) in (3.14) as in the proof of Theorem 4.2 in [8] to obtain (3.21).
We omit the details. ��
Lemma 3.6 We have

supp θξ ⊂ B(ξ, πR2− j−1) for ξ ∈ X j , j > j0. (3.22)

Proof Here we shall use the kernels Qn from (3.15) and �n from (3.13) with σ = g,
where g is from the definition of θξ in (3.2).

Assuming that ξ ∈ X j , j > j0, we have by the definition of θξ in (3.2) and (2.2)

θξ (x) = λ
1/2
ξ bμd b

μ− 1
2

1

1∫
−1

Q2 j

(
〈x, ξ 〉 + u

√
1 − |x |2

√
1 − |ξ |2

)
(1 − u2)μ−1du,

(3.23)

and by Lemma 3.4

Q2 j (cosα) = c(sin α)1−2λ

π∫
α

(cosα − cosϕ)λ−1 K2 j (ϕ)dϕ, 0 ≤ α ≤ π,

where

K2 j (α) = (π/2)n
∑
ν∈Z

(−1)ν(2μ+d−1)S

(
d

dα

)
g(2 j (α + 2πν)).

By (3.1) we have supp g ⊂ [−R, R] that readily implies supp K2 j ⊂ [−R2− j , R2− j ]
if R2− j < π . Therefore, Q2 j (cosα) = 0 if α ≥ R/2 j . We set t = cosα and use that
1 − cosα = 2 sin2(α/2) ≤ α2/2 to obtain

Q2 j (t) = 0 if t ∈ [−1, 1] and 1 − t ≥ R2/22 j+1. (3.24)
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Denote briefly t := 〈x, ξ 〉 + u
√

1 − x2
√

1 − y2. Then using (1.1) we get as in [8]

1 − t = 1 − 〈x, ξ 〉 − u
√

1 − x2
√

1 − y2

= 1 − 〈x, ξ 〉 −
√

1 − x2
√

1 − y2 + (1 − u)
√

1 − x2
√

1 − y2

≥ 1 − 〈x, ξ 〉 −
√

1 − x2
√

1 − y2 = 1 − cos d(x, ξ) = 2 sin2 d(x, y)

2

≥ 2

π2 d(x, ξ)2.

From this and (3.24) it follows that Q2 j (t) = 0 (with t from above) if d(x, ξ) ≥ πR
2 j+1 .

Consequently, on account of (3.23), θξ (x) = 0 if d(x, ξ) ≥ πR2− j−1, which proves
(3.22) in this case. The case when R2− j ≥ π is trivial. ��

3.4 Estimation of inner products

For the proof of our main result—Theorem 3.1 we need to study the localization
properties of inner products 〈Uξ , Vη〉, where

Uξ (x) := λ
1/2
ξ

∞∑
ν=0

û

(
ν + λ

2 j

)
Pν(x, ξ), Vη(x) := λ1/2

η

∞∑
ν=0

v̂

(
ν + λ

2k

)
Pν(x, η).

(3.25)

For a given function u on R we denote u j (t) := 2 j u(2 j t). We start with a well
know lemma:

Lemma 3.7 Suppose the functions u ∈ C N (R) and v ∈ C(R) satisfy the conditions:

|u(r)(t)| ≤ A1

(1 + |t |)M1
, 0 ≤ r ≤ N , |v(t)| ≤ A2

(1 + |t |)M2
,

and
∫
R

trv(t)dt = 0 for 0 ≤ r ≤ N − 1,

where N ≥ 1,M2 ≥ M1 > 1,M2 > N + 1, and A1, A2 > 0. Then for k ≥ j

|u j ∗ vk(t)| ≤ cA1 A22−(k− j)N 2 j

(1 + 2 j |t |)M1
,

where c > 0 depends only on M1,M2, and N.

This lemma is quite similar to Lemma B.1 in [2]. We omit its proof. We now turn
to the estimation of inner products of functions Uξ , Vη as above.
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Lemma 3.8 Suppose u, v ∈ S are both even and real valued,

|u(m)(t)| ≤ A1

(1 + |t |)M
and |v(m)(t)| ≤ A2

(1 + |t |)M
, 0 ≤ m ≤ N + 2μ+ d − 1,

(3.26)

and

∫
R

tr u(t)dt =
∫
R

trv(t)dt = 0, 0 ≤ m ≤ N − 1, (3.27)

where N > 1 and M > N + 1. Then for ξ ∈ X j and η ∈ Xk

|〈Uξ , Vη〉| ≤ cA1 A22−|k− j |(N+d/2)
(

1 + 2min{k, j}d(ξ, η)
)−M

. (3.28)

Proof Because of the symmetry in (3.28) we may assume that k ≥ j . Since Pn(·, ·)
is the kernel of the orthogonal projector Projn : L2(wμ) �→ Vn we have

∫

Bd

Pm(x, ξ)P�(x, η)wμ(x)dx = δm,�Pm(ξ, η).

Using this and the fact that λξ ∼ |B(ξ, 2− j )| for ξ ∈ X j we obtain for ξ ∈ X j and
η ∈ Xk

〈Uξ , Vη〉 ∼ |B(ξ, 2− j )|1/2|B(η, 2−k)|1/2
∞∑
ν=0

û

(
ν + λ

2 j

)
v̂

(
ν + λ

2k

)
Pν(ξ, η).

It is readily seen that

û

(
ν + λ

2 j

)
v̂

(
ν + λ

2k

)
= (u j ∗ vk)

∧(ν + λ) = (u ∗ vk− j )
∧
(
ν + λ

2 j

)
.

Evidently,

(u ∗ vk− j )
(m)(t) = (u(m) ∗ vk− j )(t)

and therefore, by Lemma 3.7,

|(u ∗ vk− j )
(m)(t)| ≤ cA1 A22−(k− j)N

(1 + |t |)M
, 0 ≤ m ≤ 2μ+ d − 1.
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Observe that since u, v are even, then u ∗ vk− j is also even. We now use Lemma 3.5
to obtain

|〈Uξ , Vη〉| ≤ cA1 A2
|B(η, 2−k)|1/2
|B(η, 2− j )|1/2

2−(k− j)N

(1 + 2 j d(ξ, η))M

≤ cA1 A22−(k− j)(N+d/2)(1 + 2 j d(ξ, η))−M ,

where in the last inequality we used that |B(η, 2−k)| ≤ c2−(k− j)d |B(η, 2− j )|. ��
We shall need the following useful inequality:

Lemma 3.9 For any x, y ∈ Bd , j, k ≥ 0, and γ ∈ R we have

|B(x, 2− j )|γ ≤ c|B(y, 2−k)|γ
(

1 + 2min{ j,k} d(x, y)
)2μ|γ |

2| j−k|(4μ+d)|γ |, (3.29)

where the constant c > 0 is independent of x, y, j, k.

Proof The following simple estimate is established in [8] (see estimate (4.23) in [8]):

Wμ(n; x) ≤ 2μWμ(n; y)(1 + nd(x, y))2μ, x, y ∈ Bd , n ≥ 1, (3.30)

where Wμ(n; x) :=
(√

1 − |x |2 + n−1
)2μ

. On the other hand, by (2.3) we have

Wμ(n; x) ∼ nd |B(x, n−1)|. Using this and (3.30) one routinely derives (3.29). ��

3.5 Completion of the proof of Theorem 3.1

Note that Theorem 3.1 follows by Theorem 2.7 if the matrices defined in (3.7) are
almost diagonal and ‖D‖δ < ε, ‖E‖δ < ε for some δ > 0 and sufficiently small ε.

We shall only prove that ‖E‖δ < ε. The proof of ‖D‖δ < ε is the same. By the
definition of the needlets {ψξ } we have

ψξ (x) := λ
1/2
ξ

∞∑
ν=0

â

(
ν + λ

2 j

)
Pν(ξ, x), ξ ∈ X j ,

and by the definition of θξ in (3.2) it follows that

ψη(x)− θη(x) = λ1/2
η

∞∑
ν=0

(a − g)∧
(
ν + λ

2k

)
Pν(η, x), η ∈ Xk .

The function â has already been extended as an even function on R in Sect. 3.1. Then
by (2.9) it readily follows that there exists a constant A1 > 0 such that

|a(r)(t)| ≤ A1(1 + |t |)−M , 0 ≤ r ≤ N + 2μ+ d − 1, and∫
R

tr a(t)dt = 0, r ≥ 0.
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On the other hand, by construction g is even,

|(a − g)(r)(t)| ≤ ε(1 + |t |)−M , 0 ≤ r ≤ N + 2μ+ d − 1, and∫
R

tr (a − g)(t)dt = 0, 0 ≤ r ≤ N − 1.

We now apply Lemma 3.8 with u = a and v = a − g to obtain

|〈ψη − θη, ψξ 〉| ≤ cA1εmin

{
r(ξ)

r(η)
,

r(η)

r(ξ)

}N+ d
2
(

1 + d(ξ, η)

max{r(ξ), r(η)}
)−M

We claim that since M > J + 2μ|ρ/d + 1/2| and N > J − d − s + (4μ +
2d)|ρ/d + 1/2|

|eξ,η| := |〈ψη − θη, ψξ 〉| ≤ cA1εωδ(ξ, η) (3.31)

and hence ‖E‖δ < cA1ε. However, ε is independent of c, A1,M , and N . Therefore,
cA1ε above can be replaced by ε.

For the proof of (3.31) consider the case when r(ξ) ≥ r(η), i.e. ξ ∈ X j , η ∈ Xk

and k ≥ j . From Lemma 3.9 we get

( |B(ξ, 2− j )|
|B(η, 2−k)|

)ρ/d+1/2

≥ c
(

1 + 2min{ j,k} d(x, y)
)−2μ|ρ/d+1/2|

2−| j−k|(4μ+d)|ρ/d+1/2|

(3.32)

and hence, for sufficiently small δ > 0,

|eξ,η| ≤ cA1ε2
−| j−k|(N+d/2)(1 + 2 j d(ξ, η))−M

≤ cA1ε

( |B(ξ, 2− j )|
|B(η, 2−k)|

)ρ/d+1/2
2−| j−k|(N+d/2−(4μ+d)|ρ/d+1/2|)

(1 + 2 j d(ξ, η))M−2μ|ρ/d+1/2|
≤ cA1εωδ(ξ, η),

where in the last inequality we used that by assumption M > J +2μ|ρ/d +1/2| and
N > J − d − s + (4μ+ 2d)|ρ/d + 1/2|.

The proof of (3.31) in the case r(ξ) < r(η) is the same and will be omit it. ��

4 Appendix

4.1 Construction of the function g from Sect. 3.1

Here we sketch the construction of the function g in Step 1 of the development of the
new frame� = {θξ }ξ∈X in Sect. 3.1. The construction will be carried out in two steps.

One first shows that for any ε > 0,M > 0, a positive integer N and an even
function h in the Schwartz class S on R there is an even compactly supported function
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ϕ ∈ C∞ such that

|h(r)(t)− ϕ(r)(t)| ≤ ε(1 + |t |)M , t ∈ R, r = 0, 1, . . . , N . (4.1)

To this end, choose an even functionφ ∈ C∞ such that suppφ ⊂ [−1, 1] and
∫
R
φ = 1

and define ϕk := h ∗ φk , where φk(t) := kφ(kt). Evidently

h(r)(t)− ϕ
(r)
k (t) =

∫
R

[h(r)(t)− h(r)(t − y)]φk(y)dy.

It is easy to see that for sufficiently large k > 0 the function ϕ := ϕk will satisfy (4.1)
with ε replaced by ε/2 on the right and hence for sufficiently large L > 0 the function
ϕ(t) := ∫ L

L h(y)φk(t − y)dy is even, compactly supported, ϕ ∈ C∞ and ϕ satisfies
(4.1).

The second step uses the result of the first step. Consider the shift operator
Tδ f (t) := f (t + δ). Then �s

δ f := (Tδ − T−δ)s f is the sth centered difference
of f and (�s

δ f )∧(ξ) = (2i sin δξ)s f̂ (ξ) is its Fourier transform. Choose s := 2N

and 0 < δ ≤ 1/s, and define the function h from the identity ĥ(ξ) := â(ξ)
(2i sin δξ)s ,

where â is from (2.9). Since â(ξ) = 0 for ξ ∈ [−1/2, 1/2], then ĥ ∈ S and hence
h ∈ S. Further, ĥ and h are even since â and s are even. Moreover, by the construction
a = �s

δh. Now one uses the result of the first step to construct an even compactly
supported C∞ function ϕ which satisfies (4.1) with h from above.

After this preparation, g is defined by g := �s
δϕ. We claim that g has the desired

properties. Indeed, evidently a(r) − g(r) = �s
δ(h

(r) − ϕ(r)) and by (4.1)

|a(r)(t)− g(r)(t)| ≤ ε2s+M (1 + |t |)−M , r = 0, 1, . . . , N ,

and also
∫
R

tr g(t)dt =
∫
R

tr�s
δϕ(t)dt = (−1)s

∫
R

ϕ(t)�s
δt

r dt = 0, r = 0, 1, . . . , s − 1.

By choosing ε and N appropriately this completes the construction.

4.2 Proof of Theorem 3.3

We shall need the maximal operator Mt (t > 0) defined by

Mt f (x) := sup
B�x

⎛
⎝ 1

|B|
∫
B

| f (y)|twμ(y) dy

⎞
⎠

1/t

, x ∈ Bd , (4.2)

where the sup is over all balls (with respect to d(·, ·)) B ⊂ Bd containing x .
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By (2.3) it follows that |B(x, 2r)| ≤ c|B(x, r)| for x ∈ Bd and r > 0, which
means that |E | := ∫

E wμ(x) dx is a doubling measure on Bd . Therefore, the general
theory of maximal operators applies and the Fefferman–Stein vector-valued maximal
inequality holds (see [9]): If 0 < p < ∞, 0 < q ≤ ∞, and 0 < t < min{p, q} then
for any sequence of functions { fν}ν on Bd

∥∥∥∥
( ∞∑
ν=1

|Mt fν(·)|q
)1/q ∥∥∥∥

L p

≤ c

∥∥∥∥
( ∞∑
ν=1

| fν(·)|q
)1/q ∥∥∥∥

L p

. (4.3)

We shall need the following lemma:

Lemma 4.1 Let 0 < t ≤ 1 and M > (d + 2μ)/t . Then for any sequence of complex
numbers {hη}η∈Xm , m ≥ j0, we have for x ∈ Rξ , ξ ∈ X ,

∑
η∈Xm

|hη|
(

1 + d(ξ, η)

max{r(ξ), r(η)}
)−M

≤ c max
{

2(m− j)(d+2μ)/t , 1
}

×Mt

⎛
⎝ ∑
η∈Xm

|hη|1Rη

⎞
⎠ (x).

Proof Consider the case r(ξ) ≥ r(η). The proof in the case r(ξ) < r(η) is similar
and will be omitted. Fix ξ ∈ X j ( j ≤ m) and set �0 := {η ∈ Xm : d(η, ξ) ≤ c�2− j }
and

�ν := {η ∈ Xm : c�2ν−1 < 2
j
d(η, ξ) ≤ c�2ν}, ν ≥ 1,

where c� is the constant from (2.14). For ν ≥ 0 we set

Bν := B(ξ, c�2−m(1 + 2ν− j+m)).

Evidently Rη ⊂ Bν if η ∈ �ν .
By (2.3) we have |B(x, r)| ∼ rd(r + d(r, ∂Bd)) and by (2.14) |Rη| ∼ |B(η, 2−m)|

for η ∈ Xm . Observe also that

d(ξ, ∂Bd) ≤ d(ξ, η)+ d(η, ∂Bd) ≤ c�2ν− j + d(η, ∂Bd), η ∈ �ν.

Using the above we get for η ∈ �ν

|Bν |
|Rη| ≤ c2(ν− j+m)d

(
2−m(1 + 2ν− j+m)+ d(ξ, ∂Bd)

2−m + d(η, ∂Bd)

)2μ

≤ c2(ν− j+m)(d+2μ).

(4.4)
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Since 0 < t ≤ 1 we have

∑
η∈Xm

|hη|
(

1 + 2 j d(ξ, η)
)−M ≤

∑
ν≥0

2−νM
∑
η∈�ν

|hη|

≤
∑
ν≥0

2−νM

⎛
⎝∑
η∈�ν

|hη|t
⎞
⎠

1/t

.

We now use this and (4.4) to obtain for x ∈ Rξ

∑
η∈�ν

|hη|t =
∫

Bd

⎛
⎝∑
η∈�ν

|hη||Rη|−1/t1Rη (y)

⎞
⎠

t

wμ(y) dy

= 1

|Bν |
∫

Bd

⎛
⎝∑
η∈�ν

|hη|
( |Bν |

|Rη|
)1/t

1Rη (y)

⎞
⎠

t

wμ(y) dy

≤ c2(ν− j+m)(d+2μ) 1

|Bν |
∫

Bd

⎛
⎝∑
η∈�ν

|hη|1Rη (y)

⎞
⎠

t

wμ(y) dy

≤ c2(ν− j+m)(d+2μ)

⎡
⎣Mt

⎛
⎝ ∑
η∈Xm

|hη|1Rη

⎞
⎠ (x)

⎤
⎦

t

.

Therefore, since M > (d + 2μ)/t we get for x ∈ Rξ

∑
η∈Xm

|hη|
(

1 + 2 j d(ξ, η)
)−M ≤

∑
ν≥0

c2−νM 2(ν− j+m)(d+2μ)/tMt

⎛
⎝ ∑
η∈Xm

|hη|1Rη

⎞
⎠ (x)

≤ c2(m− j)(d+2μ)/tMt

⎛
⎝ ∑
η∈Xm

|hη|1Rη

⎞
⎠ (x),

which completes the proof. ��

We now proceed with the proof of estimate (3.11). The proof of (3.12) is simi-
lar and will be omitted. Let A be an almost diagonal operator on f sρ

pq in the sense
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of Definition 3.2 with associated matrix (aξη)ξ,η∈X and let h ∈ f sρ
pq . Then we

have(Ah)ξ = ∑
η∈X aξηhη, where the series converges absolutely (see proof below).

Using this in the definition of f sρ
pq , we have

‖Ah‖ f sρ
pq

:=
∥∥∥∥
⎛
⎝∑
ξ∈X

[
r(ξ)−(s−ρ)|Bξ |−ρ/d |(Ah)ξ |1̃Rξ (·)

]q

⎞
⎠

1/q ∥∥∥∥
L p

≤ c

∥∥∥∥
⎛
⎝∑
ξ∈X

⎡
⎣r(ξ)−(s−ρ)|Bξ |−ρ/d

∑
η∈X

|aξη||hη|1̃Rξ (·)
⎤
⎦

q⎞
⎠

1/q ∥∥∥∥
L p

≤ c(�1+�2),

where

�1 :=
∥∥∥∥
⎛
⎝∑
ξ∈X

⎡
⎣r(ξ)−s+ρ |Bξ |−ρ/d

∑
r(η)≤r(ξ)

|aξη||hη|1̃Rξ (·)
⎤
⎦

q⎞
⎠

1/q ∥∥∥∥
L p

and

�2 :=
∥∥∥∥
⎛
⎝∑
ξ∈X

⎡
⎣r(ξ)−s+ρ |Bξ |−ρ/d

∑
r(η)>r(ξ)

|aξη||hη|1̃Rξ (·)
⎤
⎦

q⎞
⎠

1/q ∥∥∥∥
L p

.

To estimate �1 we shall use that ‖A‖δ < ∞. Thus whenever r(η) ≤ r(ξ)

|aξη| ≤ c‖A‖δ
(

r(η)

r(ξ)

)J −s+ρ+δ/2 ( |Bξ |
|Bη|

)ρ/d+1/2 (
1 + d(ξ, η)

r(ξ)

)−J −δ
.

Set λξ := r(ξ)−s+ρ |Bξ |−ρ/d−1/21Rξ (·) and choose 0 < t < min{1, p, q} so that
J + δ

2 − (d + 2μ)/t) > 0. Then we have

�1

‖A‖δ ≤ c

∥∥∥∥∥∥∥

⎛
⎝∑
ξ∈X

⎡
⎣ ∑

r(η)≤r(ξ)

(
r(η)

r(ξ)

)J −s+ρ+ δ
2
( |Bξ |

|Bη|
)ρ/d+1/2

×
(

1 + d(ξ, η)

r(ξ)

)−J −δ
|hη|λξ (·)

⎤
⎦

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

= c

∥∥∥∥∥∥
⎛
⎝∑

j≥ j0

∑
ξ∈X j

⎡
⎣∑

m≥ j

2( j−m)(J −s+ρ+ δ
2 )

∑
η∈Xm

( |Bξ |
|Bη|

)ρ/d+1/2

× |hη|
(

1 + 2 j d(ξ, η)
)−J −δ

λξ (·)
⎤
⎦

q ⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

.
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388 G. Kyriazis, P. Petrushev

We now apply Lemma 4.1 and the maximal inequality (4.3) to obtain

�1

‖A‖δ ≤ c

∥∥∥∥∥∥
⎛
⎝∑

j≥ j0

∑
ξ∈X j

⎡
⎣∑

m≥ j

2( j−m)(J −s+ρ+ δ
2 −(d+2μ)/t)

× Mt

⎛
⎝ ∑
η∈Xm

( |Bξ |
|Bη|

)ρ/d+1/2

|hη|1Rη

⎞
⎠ (·)λξ (·)

⎤
⎦

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

≤ c

∥∥∥∥∥∥∥

⎛
⎝∑

j≥ j0

⎡
⎣∑

m≥ j

2( j−m)(J + δ
2 −(d+2μ)/t))Mt

⎛
⎝ ∑
η∈Xm

|hη|λη
⎞
⎠
⎤
⎦

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

≤ c

∥∥∥∥∥∥∥

⎛
⎝∑

j≥ j0

⎛
⎝Mt

⎛
⎝∑
ξ∈X j

|hξ |λξ
⎞
⎠
⎞
⎠

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

≤ c‖h‖ f sρ
pq
.

To estimate �2 we again use that ‖A‖δ < ∞. Then if r(η) > r(ξ) we have

|aξη| ≤ c‖A‖δ
(

r(ξ)

r(η)

)s−ρ+δ/2 ( |Bξ |
|Bη|

)ρ/d+1/2 (
1 + d(ξ, η)

r(η)

)−J −δ
.

Therefore, setting again λξ := r(ξ)−s+ρ |Bξ |−ρ/d−1/21Rξ (·) we have

�2

‖A‖δ ≤ c

∥∥∥∥∥∥
⎛
⎝∑
ξ∈X

⎡
⎣ ∑

r(η)>r(ξ)

(
r(ξ)

r(η)

)s−ρ+ δ
2
( |Bξ |

|Bη|
)ρ/d+1/2

×
(

1 + d(ξ, η)

r(η)

)−J −δ
|hη|λξ (·)

]q) 1
q
∥∥∥∥∥∥

L p

= c

∥∥∥∥∥∥
⎛
⎝∑

j≥ j0

∑
ξ∈X j

⎡
⎣∑

m< j

2(m− j)(s−ρ+ δ
2 )

∑
η∈Xm

( |Bξ |
|Bη|

)ρ/d+1/2

× |hη|
(
1 + 2md(ξ, η)

)−J −δ
λξ (·)

]q) 1
q

∥∥∥∥∥∥
L p

.

Employing again Lemma 4.1 and the maximal inequality (4.3) we obtain

�2

‖A‖δ ≤ c

∥∥∥∥∥∥
⎛
⎝∑

j≥ j0

∑
ξ∈X j

⎡
⎣∑

m< j

2(m− j)(s−ρ+ δ
2 )
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× Mt

⎛
⎝ ∑
η∈Xm

( |Bξ |
|Bη|

)ρ/d+1/2

|hη|1Rη

⎞
⎠ λξ (·)

⎤
⎦

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

≤ c

∥∥∥∥∥∥∥

⎛
⎝∑

j≥ j0

⎡
⎣∑

m< j

2(m− j)(δ/2)Mt

⎛
⎝ ∑
η∈Xm

|hη|λη
⎞
⎠
⎤
⎦

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

≤ c

∥∥∥∥∥∥∥

⎛
⎝∑

j≥ j0

⎡
⎣Mt

⎛
⎝∑
ξ∈X j

|hξ |λξ
⎞
⎠
⎤
⎦

q⎞
⎠

1
q
∥∥∥∥∥∥∥

L p

≤ c‖h‖ f sρ
pq
.

The above estimates for �1 and �2 imply (3.11). ��

4.3 Proof of Lemma 3.4

We shall need the Dirichlet–Mehler integral representation of Gegenbauer polynomi-
als [1, p. 177]

Cλ
ν (cosα) = 2λ�(λ+ 1

2 )�(ν + 2λ)√
πν!�(λ)�(2λ)(sin α)2λ−1

π∫
α

cos ((ν + λ)ϕ − λπ)

(cosα − cosϕ)1−λ dϕ. (4.5)

This and (3.15) imply that (3.16) holds with

Kn(α) =
∞∑
ν=0

σ̂

(
ν + λ

n

)
(ν + λ)(ν + 2μ+ d − 2)!

ν! ×
{

sin λπ sin(ν + λ)α, 2μ+ d even
cos λπ cos(ν + λ)α, 2μ+ d odd.

Since (ν+λ)(ν+2μ+d−2)!
ν! = (ν + λ)(ν + 2μ+ d − 2) . . . (ν + 1) we have

(ν + λ)(ν + 2μ+ d − 2)!
ν! =

�μ+ d−1
2 �∏

r=1

(
(ν + λ)2 − (λ− r)2

)
×

{
ν + λ, 2μ+ d even
1, 2μ+ d odd,

and setting

F(z) :=
�μ+ d−1

2 �∏
r=1

(
z2 − (λ− r)2

)
×

{
z sin λπ, 2μ+ d even
cos λπ, 2μ+ d odd.

we arrive at

Kn(α) =
∞∑
ν=0

σ̂

(
ν + λ

n

)
F(ν + λ)×

{
sin(ν + λ)α, 2μ+ d even
cos(ν + λ)α, 2μ+ d odd.

123



390 G. Kyriazis, P. Petrushev

It is readily seen that F(−z) = (−1)2μ+d−1 F(z) and F has zeros at the points
±(λ − r), r = 1, . . . , �μ + d−1

2 �. Most importantly, since σ̂ is even and because of
the symmetry and zeros of F

Kn(α) = (1/2)
∑
ν∈Z

σ̂

(
ν + λ

n

)
F(ν + λ)×

{
sin(ν + λ)α, 2μ+ d even
cos(ν + λ)α, 2μ+ d odd.

(4.6)

Set

S(z) :=
�μ+ d−1

2 �∏
r=1

(
−z2 − (λ− r)2

)
×

{−z sin λπ, 2μ+ d even
cos λπ, 2μ+ d odd

which is a polynomial of degree 2μ+d −1 (related to F). Then (4.6) can be rewritten
in the form

Kn(α) = (1/2)S

(
d

dα

)∑
ν∈Z

σ̂

(
ν + λ

n

)
cos(ν + λ)α

= (1/4)S

(
d

dα

)∑
ν∈Z

σ̂

(
ν + λ

n

)
ei(ν+λ)α. (4.7)

Now, set f̂ (ξ) := σ̂ (
ξ+λ

n )ei(ξ+λ)α . It is easy to see that this is the Fourier transform
of f (y) = ne−iλyσ(n(y + α)). We now invoke the Poisson summation formula:

∑
ν∈Z

f (2πν) = (2π)−1
∑
ν∈Z

f̂ (ν)

and put everything together in (4.7) to obtain

Kn(α) = (π/2)nS

(
d

dα

)∑
ν∈Z

e−2π iνλσ (n(α + 2πν)) . (4.8)

This implies (3.17). ��

References

1. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, vols. I–II.
McGraw-Hill, New York (1953)

2. Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution. J. Funct. Anal. 93, 34–
170 (1990)

3. Kyriazis, G., Petrushev, P.: On the construction of frames for spaces of distributions. J. Funct.
Anal. 257, 2159–2187 (2009)

4. Kyriazis, G., Petrushev, P., Xu, Y.: Weighted distribution spaces on the ball. Proc. Lond. Math.
Soc. 97, 477–513 (2008)

5. Narcowich, F., Petrushev, P., Ward, J.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–
592 (2006)

123



Compactly supported frames on the ball 391

6. Peetre, J.: New thoughts on Besov spaces. Duke Univ. Math. Ser., Durham (1993)
7. Petrushev, P., Xu, Y.: Localized polynomial frames on the interval with Jacobi weights. J. Fourier Anal.

Appl. 11, 557–575 (2005)
8. Petrushev, P., Xu, Y.: Localized polynomial frames on the ball. Constr. Approx. 27, 121–148 (2008)
9. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Prince-

ton University Press, Princeton, NJ (1993)
10. Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Nord-Holland, Amster-

dam (1978)
11. Triebel, H.: Theory of Function Spaces, Monographs in Mathematics, vol. 78, Birkhäuser, Basel (1983)
12. Xu, Y.: Summability of Fourier orthogonal series for Jacobi weight on a ball in R

d . Trans. Am. Math.
Soc. 351, 2439–2458 (1999)

123


	``Compactly'' supported frames for spaces of distributions on the ball
	Abstract
	1 Introduction
	2 Background material
	2.1 Weighted Triebel--Lizorkin and Besov spaces on boldmath Bd
	2.2 Frames (needlets) on boldmath Bd
	2.3 General scheme for construction of frames

	3 New frame with elements of small shrinking supports on Bd
	3.1 Construction of the new frame
	3.2 Almost diagonal matrices
	3.3 Estimation of boldmath supp θξand localization of kernels
	3.4 Estimation of inner products
	3.5 Completion of the proof of Theorem 3.1

	4 Appendix
	4.1 Construction of the function boldmath g from Sect. 3.1
	4.2 Proof of Theorem 3.3
	4.3 Proof of Lemma 3.4

	References


