Some useful facts:
$\mathcal{L}\{0\} \equiv 0$
$\mathcal{L}\left\{t^{n}\right\}=n!/ s^{n+1}$ for all non-negative integers n and $s>0$
$\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}$ for $s>a$
$\mathcal{L}\{\cos k t\}=\frac{s}{s^{2}+k^{2}}$ for $s>0$
$\mathcal{L}\{\sin k t\}=\frac{k}{s^{2}+k^{2}}$ for $s>0$
If $\mathcal{L}\{f(t)\}=F(s)$, then:
(a) $\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$
(b) $\mathcal{L}\left\{\int_{0}^{t} f(\tau) d \tau\right\}=\frac{1}{s} F(s)$.
(c) $\mathcal{L}\left\{f^{(n)}(t)\right\}=s^{n} F(s)-s^{n-1} f(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1}(0)$

$$
\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t=F(s)
$$

The general solution to a nonhomogeneous linear differential equation $L[y]=f(x)$ is $y_{c}+y_{p}$, where y_{c} is the general solution to the associated homogeneous equation $L[y]=0$, and y_{p} is any solution to the original equation.

If the characteristic equation has the roots $r=s+i u$ and $r=s-i u$ then two linearly independent solutions to the original equation are $y_{1}(x)=e^{s} \cos (u x)$ and $y_{2}(x)=$ $e^{s} \sin (u x)$.

$$
\left.\frac{d y}{d x}=g(x) h(y)=\frac{g(x)}{f(y)} \quad \quad \text { [Separable equation }\right]
$$

$\frac{d y}{d x}=F\left(\frac{y}{x}\right) \quad$ [homogeneous first order equation] \quad substitute $v=\frac{y}{x}, y=v x$
The word "homogeneous" means something completely different in second order equations.

