Some useful facts:

$$\mathcal{L}\{0\} \equiv 0$$

 $\mathcal{L}\{t^n\} = n!/s^{n+1}$ for all non-negative integers n and s > 0

$$\mathcal{L}\lbrace e^{at}\rbrace = \frac{1}{s-a} \text{ for } s > a$$

$$\mathcal{L}\{\cos kt\} = \frac{s}{s^2 + k^2} \text{ for } s > 0$$

$$\mathcal{L}\{\sin kt\} = \frac{k}{s^2 + k^2} \text{ for } s > 0$$

If
$$\mathcal{L}{f(t)} = F(s)$$
, then:

(a)
$$\mathcal{L}\lbrace e^{at}f(t)\rbrace = F(s-a)$$

(b)
$$\mathcal{L}\{\int_0^t f(\tau) d\tau\} = \frac{1}{s} F(s).$$

(c)
$$\mathcal{L}{f^{(n)}(t)} = s^n F(s) - s^{n-1} f(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0)$$

$$\mathcal{L}{f(t)} = \int_0^\infty e^{-st} f(t) dt = F(s)$$

The general solution to a nonhomogeneous linear differential equation L[y] = f(x) is $y_c + y_p$, where y_c is the general solution to the associated homogeneous equation L[y] = 0, and y_p is any solution to the original equation.

If the characteristic equation has the roots r = s + iu and r = s - iu then two linearly independent solutions to the original equation are $y_1(x) = e^s \cos(ux)$ and $y_2(x) = e^s \sin(ux)$.

$$\frac{dy}{dx} = g(x)h(y) = \frac{g(x)}{f(y)}$$
 [Separable equation]

$$\frac{dy}{dx} = F\left(\frac{y}{x}\right)$$
 [homogeneous first order equation] substitute $v = \frac{y}{x}$, $y = vx$

The word "homogeneous" means something completely different in second order equations.